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Abstract

This dissertation is a compilation of three papers developing a class of compositional

state space models for modeling a latent set of time-varying portfolio compositions on

the simplex as well as net leverage values given a time series of portfolio return obser-

vations. Estimation techniques incorporating particle filtering and particle learning

concepts are exhibited. These estimation techniques are motivated by the estimation

of asset class weights and net leverage values on the aggregate hedge fund industry

from 1995 to 2012.

In the first paper, I present a compositional state space model for estimation of an

investment portfolio’s unobserved asset allocation weightings on a set of candidate

assets when the only observed information is the time series of portfolio returns and

the candidate asset returns. I exhibit both sequential Monte Carlo numerical and

conditionally Normal analytical approaches to solve for estimates of the unobserved

asset weight time series. Furthermore, I show how to implement the results as pre-

dictive investment weightings in order to construct hedge fund replicating portfolios.

In the second paper, I demonstrate how to implement joint estimation of net

portfolio leverage dynamics into the previous paper’s setup. By incorporating recent

work in parameter learning in state space models, I also show how to not only sequen-

tially estimate the time-varying latent values, but also the parametrization of their

generative distributions. Using this technique, I estimate net portfolio leverage on a

set of hedge fund indices representing the returns on different broad classifications

xii
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of funds. Finally, I exhibit the accuracy of these techniques by estimating asset class

level regressions on the asset class return values against the same-period changes

in the portfolio investment weights in order to demonstrate investment effects on

same-period prices.

In the third paper, I identify that since the complete picture of hedge fund hold-

ings is not observable, this presents a significant analytical hurdle for more detailed

analysis because while the average hedge fund does not outperform benchmarks on

the whole, it is possible that they exhibit skill in certain asset classes. Using the

previously developed decomposition techniques, I discover that net leverage levels in

the hedge fund industry are smaller than popular belief due to netting both inter-

nally and across different funds. As well, using these estimates, we confirm previous

findings that hedge funds do not contribute to herding behavior in most asset classes,

and in fact exhibit negative-feedback trading behavior in oil and municipal bonds.

As well, the accuracy of these techniques is demonstrated on a set of actively man-

aged diversified equity mutual funds where true industry allocation compositions are

readily observable.

xiii
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1

The Dirichlet Portfolio Model:

Uncovering the Hidden Composition of Hedge Fund

Investments

1.1 Abstract

Hedge funds have long been viewed as a veritable “black box” of investing since

outsiders may never view the exact composition of portfolio holdings. Therefore, the

ability to estimate an informative set of asset weights is highly desirable for analy-

sis. We present a compositional state space model for estimation of an investment

portfolio’s unobserved asset allocation weightings on a set of candidate assets when

the only observed information is the time series of portfolio returns and the candi-

date asset returns. In this paper, we exhibit both sequential Monte Carlo numerical

and conditionally Normal analytical approaches to solve for estimates of the unob-

served asset weight time series. This methodology is motivated by the estimation

of monthly asset class weights on the aggregate hedge fund industry from 1996 to

2012. Furthermore, we show how to implement the results as predictive investment

1
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weightings in order to construct hedge fund replicating portfolios.

1.2 Introduction

Over the past 20 years, the financial world has seen an enormous increase in demand

for hedge fund products, thereby contributing to the estimated size of this global

industry at approximately $2.13 trillion as of April 1, 2012, according to Hedge

Fund Research (HFRI). These products intend to not only maximize returns on the

assets under management during times of market boom, but also protect against

losses during economic downturns.

High demand for access to these hedge fund products is manifested in the high

value of fees charged to investors. On average, these fees come in the form of a 1-2%

management fee assessed on the total assets under management, in addition to a 15-

25% incentive fee on all capital gains. Since it can be difficult for investors to assess

the spectrum of individual hedge fund managers’ skill, most investors tend to make

their investments though a vehicle called a “fund of funds”. The purpose of these

intermediaries is to evaluate individual hedge fund managers and then allocate an

investors’ assets across a broad spectrum of managers. This division of investments

is intended to diversify away risk associated with individual managers, and instead

provide exposure to the returns of the hedge fund industry as a whole. For these

fund of funds services, a median 1.5% management fee plus a 10% capital gains fee

is charged on top of the existing individual managers’ fees. These fees quickly add

up and can easily eat away at any real profits that arise from capital appreciation

on the invested funds. Due to the combination of these high fee schedule layers, it

is desirable to decompose and analyze the investment portfolios of these funds to

determine if they are truly adding value for investors, or if similar strategies can be

constructed with a much lower cost of investment.

2
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As well, investors’ investment goals and tolerance for risk exposures may not align

with the incentive structure of hedge fund and fund-of-fund managers. Therefore,

a decomposition of a hedge fund’s exposures to the risks arising from various asset

classes is desired. Of particular interest is how hedge fund managers respond to var-

ious macroeconomic events. Using the model and estimation methodology presented

here, we obtain a decomposition of the hedge fund industry’s asset class risk expo-

sures, which provide insight into their asset allocation process. Interestingly, we find

large increases in exposure to municipal bonds during the Dot-com Bubble decline

in 2000-2001 and the recent global financial crisis from 2007-2012.

Another important feature of the hedge fund investing world is that return per-

formance is only reported on a monthly or even quarterly basis. Therefore, we can

only observe how the fund has performed at certain discrete dates. Between those

dates, we cannot observe the current state of an individual’s invested capital. An

investor could have doubled their money, or even lost half of their wealth overnight,

but they will not know until the next reporting period. If an investor had access to

the invested asset value weightings, then they could compute estimates for intrape-

riod return and volatility values. These values can have very important implications

for current consumption choices, as well as risk management decisions.

This directly leads to a number of questions: Can we estimate what hedge funds

are invested in, as well as how that asset allocation changes over time? Then, using

these estimates of asset allocation, can we generate intra-reporting-period return and

volatility estimates? That is, can we estimate how hedge funds are performing on

a daily or even second-by-second granularity? Furthermore, can we replicate this

hedge fund portfolio in order to produce a similar series of returns, but through

investing in easily accessible assets?

This portfolio estimation setup suggests a state space estimation problem where

3
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the latent compositional weights are required to sum to 1. Due to this restriction, we

venture beyond the classic Kalman Filter solution to estimate the weights (Kalman,

1960). The results from Chipman and Rao (1964) and Tintner (1952) on Constrained

Least Squares (CLS) estimation allow for this restriction in static models. However,

the CLS model does not allow for a dynamic compositional weight process. In re-

sponse, Chia (1985) and Simon and Chia (2002) present a solution with this restric-

tion for dynamic models. However, we show that these techniques do not perform

well for this application. Other notable work in compositional time series models

are presented in Grunwald, Raftery, and Guttorp (1993) and Cargnoni, Müller, and

West (1997). These focus on multinomial observational models of pure proportions

or multinomial counts. This work is in the spirit of those results, although we focus

on univariate observations arising from a transformation of the latent compositional

values. The form of the generative dynamic model is as follows:

wt ∼ Dir

(

α
wt−1 ◦ (1 + rPA,t−1)

∑n
i=1wt−1,i(1 + rPA,t−1,i)

)

rHF,t ∼ t(w′
trPA,t, σ

2
ǫ , ν)

Our approach is to use the particle filtering methodology of Gordon, Salmond, and

Smith (1993) to numerically solve the estimation problem on the portfolio weights

wt. Also, making use of the particle filtering methods allows us to venture outside

the simple Gaussian observational error assumption, thereby giving more suitable

estimation results.

The remainder of this paper is structured as follows: Section 2 describes the

statistical setup and motivation of the basic dynamic model. Section 3 presents

the fully specified Dirichlet Portfolio Model (DPM), the Sequential Monte Carlo

approach for solving it, as well as an analytically solvable conditionally Normal

4
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approximation. Section 4 outlines previous approaches to solve this problem, their

respective drawbacks, and proposed improvements. Section 5 compares the DPM to

the other approaches under simulated and model hedge fund trading environments.

Section 6 uses actual hedge fund return data to estimate latent investment weights.

Section 7 outlines how these results can be used to estimate intraperiod hedge fund

return and volatility values, as well as construct hedge fund replicating portfolios.

Finally, section 9 concludes.

1.3 The Tracking & Filtering Problem

1.3.1 General Setup

First, consider the problem of estimating the latent weights on individual asset

classes. That is, at each time period we desire to combine prior information on

these weights with new information introduced through observed overall hedge fund

performance given the contemporaneous performance on the asset classes of interest.

This leads to defining a dynamic state space model of the following form:

rHF,t = f(wt, rPA,t)

wt = g(Ft−1)

where Ft is the filtering of all information known at time t. Hence, this includes all

previous hedge fund index returns rHF , palette asset returns rPA, and palette asset

weights w up to and including time t. That is,

Ft = {rHF,1, . . . , rHF,t, rPA,1, . . . , rPA,t, w1, . . . , wt} .

Note that wt = (wt,1, wt,2, ..., wt,n)
′ is a n × 1 vector of the weights on each asset at

the beginning of time period t, rPA,t = (rPA,t,1, rPA,t,2, .., rPA,t,n)
′ is a n× 1 vector of

the palette asset returns over time period t, and rHF,t is a scalar value of the return

5
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on the hedge fund index over the same time period t. The chronology of the time

period notation is illustrated below:

wt−1 wt wt+1 wt+2rPA,t−1, rHF,t−1 rPA,t, rHF,t rPA,t+1, rHF,t+1

t− 1 t t+ 1

Figure 1.1: Timeline Notation Illustration

We can define a form for the observation function f(·). Since the aggregate return

on a portfolio of assets in simply the sum of the value weighted returns on the assets,

the observation equation can be written as follows:

rHF,t = w′
trPA,t + ǫt

where ǫ is a stochastic term to be given a distributional form later. This term is very

important because it is unrealistic and potentially impossible to include all possible

assets that a portfolio may be comprised of. Therefore, it is necessary to allow for

a term to pick up the variation in the observed index returns which is orthogonal to

the palette asset returns.

Determining the form of the transition function, g(·), is a bit more challenging.

There may not necessarily be an exact science of how portfolio managers transition

their asset weightings from period to period, but Amenc, Martellini, Meyfredi, and

Ziemann (2010) suggest the following property:

E[wt|Ft−1] = wt−1

This suggests that on average, portfolio managers keep the same asset value weight-

ings from period to period. This is a reasonable assumption, however it does intro-

duce a subtle problem. To illustrate this, take for example a portfolio of 2 assets

6
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where both are initially given equal value weighting (i.e. 50% each). Now, suppose

that asset 1 yields a return of 0% and asset 2 yields a return of 100% over a given

time period. Due to capital appreciation, assets 1 and 2 now have value weightings

of 33.3% and 66.7%, respectively. If the above property were employed in creating

a transitional distribution, the prior expectation of the asset weights would both be

50% (hence completely ignoring the idea of capital appreciation/depreciation). This

property hereby causes an artificial “mean reversion” effect on the asset weights since

assets with relatively high return performance will be forced to have a relatively low

prior in the next period, and vice versa.

Since an estimation procedure is desired which does not favor a “mean rever-

sion” effect over a “momentum” effect, it is much more intuitive to implement a true

random-walk process for the weights, which is what Amenc et al likely intended.

Since it is unlikely that the aggregate universe of portfolio managers consistently

employs an asset allocation strategy which ignores capital appreciation, this is eco-

nomically reasonable as well. In order to account for capital appreciation and de-

preciation, the previous period’s weight estimates, wt−1 are updated by the relative

increase in the observed period t− 1 asset returns, rPA,t−1. This gives the following

property:

E[wt|Ft−1] =
wt−1 ◦ (1 + rPA,t−1)

∑n
i=1wt−1,i(1 + rPA,t−1,i)

(1.1)

where ◦ is the Hadamard product.

It is important to note that the aggregate size of the hedge fund industry is about

$2 trillion. Due to the very large nature of this aggregate hedge fund portfolio, it

is unlikely that the entire industry could make major rebalancing shifts in the asset

class weights from period to period. That is, it would be very unlikely, and incredibly

difficult for the entire industry to consistently employ either a “mean reversion” or
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“momentum” style strategy. This is further, and potentially stronger support for the

above property.

A stochastic component η is incorporated into the weight transition in order to

allow for the period-to-period uncertainty about transitional changes in the weights.

A distributional form will be imposed on this as well.

The general dynamic state space model for this problem is written:

rHF,t = w′
trPA,t + ǫt (1.2)

wt =
wt−1 ◦ (1 + rPA,t−1)

∑n
i=1wt−1,i(1 + rPA,t−1,i)

+ ηt (1.3)

s.t.

n∑

i=1

wt = 1

Note that in this model there is no non-negativity constraint on the weights. Negative

values would imply a “short” weight on a palette asset.

1.3.2 Estimation

We are interested in solving for estimates of the asset weights conditional on all

information available up to and including the current period.

First, because of the Markov property of the model, the true weights at time t

can be written as conditionally independent of all earlier times given information in

the previous time t− 1:

p(wt|w0, ..., wt−1, rPA,0, ..., rPA,t−1) = p(wt|wt−1, rPA,t−1)

As well, the observation model at time t is conditionally independent of all earlier

times given information in the current time t:

p(rHF,t|w0, ..., wt, rPA,0, ..., rPA,t) = p(rHF,t|wt, rPA,t)

8
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Therefore, the probability distribution over all states in the model is:

p(w0, ..., wt, rHF,1, ..., rHF,t) = p(w0)
t∏

τ=1

p(rHF,τ |wτ , rPA,τ )p(wτ |wτ−1, rPA,τ−1)

In order to estimate the weights wt conditional on the information up to the current

time t we simply need to marginalize out the previous time periods. Bayes rule gives

the following expression:

p(wt|rHF,t, rPA,t) ∝ p(rHF,t|wt, rPA,t)
︸ ︷︷ ︸

Likelihood

p(wt|rHF,t−1, rPA,t−1)
︸ ︷︷ ︸

Prior

This is the “update” step, where the prior on the weights at the current time period

is given by:

p(wt|rHF,t−1, rPA,t−1) =

∫

p(wt|wt−1, rPA,t−1)p(wt−1|Ft−1)dwt−1

The estimates of interest are obtained, p(wt|Ft).

Under conditions of linearity and Normality this problem can be solved analyt-

ically with the Kalman filter. However, if either of those conditions are violated,

then the above densities are intractable and therefore approximate inference must

be employed via Sequential Monte Carlo Methods.

1.3.3 Prediction

At a given point in time t, the posterior predictive distribution is used as our next

period forecast. This is given by:

p(wt+1|wt, rPA,t)

This is the same distribution as the prior for the next step ahead estimation problem.

This prediction problem is of special interest since access is not available to the

9
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aggregate of “true” hedge fund industry asset allocations, and therefore if we are

to believe the assumption that the aggregate hedge fund industry does not (and

possibly cannot, due to its large size) change asset class weightings very quickly, then

the “predictive” return accuracy will give insight into how accurate the estimation

technique is when using real world data.

As well, by constructing an estimation method for the relative portfolio weights,

then these estimated latent weights can be used to project what funds may be in-

vested in at any point in the future. This gives the ability to estimate a distribution

of potential latent intraperiod returns at any of these points:

p(rHF,t|rPA,t,Ft−1) = p(wt|rPA,t−1, rHF,t−1)
′rPA,t

1.4 Sequential Monte Carlo Approach

Herein, the proposed general dynamic model for this state space problem will have

distributional forms imposed on the stochastic nature of the expressions in order to

develop a feasible model for estimation.

1.4.1 Model

First, the weight transition model (1.3) is considered. Recall the existence of the

budgetary restriction
∑n

i=1wt = 1 on the relative portfolio weights. Although it may

be easy for an individual hedge fund to take a short position on an asset class, it

is very hard for the aggregate of all $2+ trillion worth of hedge funds to take a net

short position on some asset class. Therefore, we impose the restriction that asset

class weightings may not take on a negative value, wt,i ≥ 0 for i ∈ {1, ..., n}. This

suggests the use of a Dirichlet distribution for the weight transitions:

wt ∼ Dir

(

α
wt−1 ◦ (1 + rPA,t−1)

∑n
i=1wt−1,i(1 + rPA,t−1,i)

)

(1.4)

10



www.manaraa.com

where α is a scalar concentration parameter controlling how much the aggregate

hedge fund industry changes its investment weightings each period. Notice how this

satisfies the desired property suggested in (1.1):

E[wt|Ft−1] =
α

α0

=
wt−1 ◦ (1 + rPA,t−1)

∑n
i=1wt−1,i(1 + rPA,t−1,i)

where

α ≡ α
wt−1 ◦ (1 + rPA,t−1)

∑n
i=1wt−1,i(1 + rPA,t−1,i)

and

α0 ≡
n∑

j=1

αj =
n∑

j=1

α
wt−1,j(1 + rPA,t−1,j)

∑n
i=1wt−1,i(1 + rPA,t−1,i)

= α

Consider the observation model (1.2). The purpose of the parameter ǫt is to pick

up the variation in the hedge fund index returns rHF,t which is orthogonal to the

palette asset returns rPA,t, it is appropriate to consider a leptokurtic distribution

due to the fat-tail property commonly exhibited by financial data first noted by

Mandelbrot (1963). Therefore, the following scale-location Student-t model is used

in our analysis:

rHF,t ∼ t(w′
trPA,t, σ

2
ǫ , ν) (1.5)

By combining expressions (1.4) and (1.5), our dynamic model is completely defined

to form the foundational Dirichlet Portfolio Model (DPM):

wt ∼ Dir

(

α
wt−1 ◦ (1 + rPA,t−1)

∑n
i=1wt−1,i(1 + rPA,t−1,i)

)

rHF,t ∼ t(w′
trPA,t, σ

2
ǫ , ν)

This model can be used for estimation of latent asset weights in any portfolio where

we are interested in the dynamics of weights changes due to active trading decisions.
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1.4.2 Filtering Method

The use of a Dirichlet transition model, as well as the Student-t observation model

has ruled out analytical solutions to this problem. Therefore, a Sequential Monte

Carlo simulation technique is used to estimate the palette asset weights.

First, a prior distribution is placed over the initial palette asset weights:

w0 ∼ Dir

(

α0

(
1

n
, ...,

1

n

)′)

where α0 is a scalar concentration parameter controlling initial uncertainty about the

prior weight distribution. Each asset is given equal weight in expectation with the

lack of better information. Simulating from this distribution gives a set of particles

{w0}p, p ∈ {1, ..., P}, characterizing the approximation. Then, at each point in

time we iteratively propagate and resample as defined in the Sequential Importance

Resampling (SIR) algorithm of Rubin (1987) and Smith and Gelfand (1992). This

process produces the weight distribution estimates of interest.

First, consider the propagation step. Let there exist a set of particles {wt−1}p

representing the distribution p(wt−1|rHF,t−1, rPA,t−1) from a previous iteration. In

order to find the prior distribution for the asset weights at time t, p(wt|wt−1, rPA,t−1),

draws from the transition model for each particle {wt−1}p are made. This yields a

set of particles {wt|t−1}p approximating this prior distribution. Second, consider

the resampling step. Given the set of particles {wt|t−1}p approximating the prior

distribution, they are resampled with respect to their relative likelihoods given by

ωt = p(rHF,t|wt, rPA,t). This set of resampled particles {wt}p ≡ {wt|t}p will therefore

approximate the desired distribution p(wt|rHF,t, rPA,t).

Using these results, forms for all of the probability distributions in the SIR algo-
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rithm are fully specified. First, the ‘Step 1’ propagation step is defined:

p(wt|w
(p)
t−1, rPA,t−1) ≡ Dir

(

α
w

(p)
t−1 ◦ (1 + rPA,t−1)

∑n
i=1w

(p)
t−1,i(1 + rPA,t−1,i)

)

Second, the ‘Step 2’ normalized importance weights are computed from the ob-

servation model rHF,t ∼ t(w′
trPA,t, σ

2
ǫ , ν) where

p(rHF,t|wt, rPA,t) =
Γ(ν+1

2
)

Γ(ν
2
)
√

πνσ2
ǫ

(

1 +
1

ν

(rHF,t − w′
trPA,t)

2

σ2
ǫ

)− ν+1

2

Therefore, the importance weights are given by:

ω
(p)
t ≡

p(rHF,t|w
(p)
t , rPA,t)

∑P
φ=1 p(rHF,t|w

(φ)
t , rPA,t)

=

(

νσ2
ǫ +

(

rHF,t − w
(p)′
t rPA,t

)2
)− ν+1

2

∑P
φ=1

(

νσ2
ǫ +

(

rHF,t − w
(φ)′
t rPA,t

)2
)− ν+1

2

Finally, the initial palette asset weight distribution is set:

p(w0) ≡ Dir

(

α0

(
1

n
, ...,

1

n

)′)

Note that if there exists better information about the distribution p(w0), the use of

that will naturally lead to superior and more appropriate results.

Now, we substitute in these developed forms for the Dirichlet Portfolio Model to

get the fully specified DPM Estimation Algorithm in Figure 1.2.

1.4.3 Conditionally Normal Approximation

Due to the non-Gaussian nature of this multivariate compositional model, the poste-

rior distributions of the asset weights cannot be solved for in analytical closed form.

Therefore, sequential Monte Carlo methods are employed to numerically approximate

13
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DPM Estimation Algorithm

Initialize: Sample prior weights from

w
(p)
0 ∼ Dir

(

α0

(
1

n
, ...,

1

n

)′)

Iterate:

Step 1: Propagate new asset weights from

w
(p)
t ∼ Dir

(

α
w

(p)
t−1 ◦ (1 + rPA,t−1)

∑n
i=1w

(p)
t−1,i(1 + rPA,t−1,i)

)

for p = 1, ..., P

Step 2: Resample asset weights from

w
(p)
t ∼MultP

({

ω
(φ)
t , w

(φ)
t

}P

φ=1

)

where the normalized importance weights are given by

ω
(p)
t =

(

νσ2
ǫ +

(

rHF,t − w
(p)′
t rPA,t

)2
)− ν+1

2

∑P
φ=1

(

νσ2
ǫ +

(

rHF,t − w
(φ)′
t rPA,t

)2
)− ν+1

2

Figure 1.2: DPM Estimation Algorithm

these distributions. Another approach to solving this problem is to approximate the

Dirichlet errors by a multivariate Gaussian distribution replicating the first two mo-

ments at each step time. So, just as was done in the above solution, the error

distributions of the transitions must be reparametrized at each time step based upon

the estimation results from the previous step.

First, consider the transition model from the DPM in (1.4). It can be shown that

the first two moments of wt are:

µt ≡ E[wt|Ft−1] =
wt−1 ◦ (1 + rPA,t−1)

∑n
i=1wt−1,i(1 + rPA,t−1,i)
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and

Cov[wt,i, wt,j|Ft−1] =
αi(α0Ii=j −αj)

α2
0(α0 + 1)

where

αi ≡ α
wt−1,i(1 + rPA,t−1,i)

∑n
i=1wt−1,i(1 + rPA,t−1,i)

and α0 =
∑

i

αi = α

from above. So, it can be shown that:

Σt,i,j ≡ Cov[wt,i, wt,j|Ft−1] =
wt−1,i(1 + rPA,t−1,i) (ξt−1Ii=j − wt−1,j(1 + rPA,t−1,j))

ξt−1(α + 1)

and

ξt−1 =
n∑

k=1

wt−1,k(1 + rPA,t−1,k)

Then, using this, the original DPM Model can be approximately rewritten into

the Conditionally Normal Dirichlet Portfolio Model (CN-DPM) assuming a Gaussian

observational distribution:

wt ∼ N (µt,Σt)

µt =
wt−1 ◦ (1 + rPA,t−1)

∑n
i=1wt−1,i(1 + rPA,t−1,i)

Σt =

[
wt−1,i(1 + rPA,t−1,i) (ξt−1Ii=j − wt−1,j(1 + rPA,t−1,j))

ξt−1(α + 1)

]

i,j

rHF,t ∼ N(w′
trPA,t, σ

2
ǫ )

Note that although the observational distribution may not be best modeled by a

Gaussian form, it is a necessary simplification to use the results from Kalman (1960)

to solve the dynamic model analytically. Using the above form, the latent weights

are solved for in the Conditionally Normal Dirichlet Portfolio Model in Figure 1.3.
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CN-DPM Estimation Algorithm

Initialize: Set initial weight distribution

p(w0) = N (µ0,Σ0)

Iterate:

Step 1: Compute the prior weight distribution using the transition model

p(wt|Ft−1) = N
(
µt|t−1,Σt|t−1

)

µt|t−1 =
wt−1 ◦ (1 + rPA,t−1)

∑n
i=1wt−1,i(1 + rPA,t−1,i)

Σt|t−1 = Σt−1|t−1 +

[
wt−1,i(1 + rPA,t−1,i) (ξt−1Ii=j − wt−1,j(1 + rPA,t−1,j))

ξt−1(α + 1)

]

i,j

ξt−1 =
n∑

k=1

wt−1,k(1 + rPA,t−1,k)

Step 2: Compute the posterior weight distribution using the observation model

p(wt|Ft) = N
(
µt|t,Σt|t

)

µt|t = µt|t−1 +Kt(rHF,t − µ′
t|t−1rPA,t)

Σt|t =
(
I −Ktr

′
PA,t

)
Σt|t−1

where the optimal Kalman Gain value is given by

Kt =
(
Σt|t−1rPA,t

) (
r′PA,tΣt|t−1rPA,t + σ2

ǫ

)−1

Figure 1.3: CN-DPM Estimation Algorithm

1.5 Alternative Approaches

We briefly review some alternative estimation techniques that either have been used,

or could be used similarly to the Dirichlet Portfolio Model.
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1.5.1 Rolling Window OLS

The general setup of these regression models is as follows:

rHF,τ = w′
trPA,τ + ǫτ , ǫ ∼ N(0, σ2)

where τ ∈ T ≡ {t−k, t−k+1, ..., t} for a k-sized window. The classic OLS estimator

is given by ŵt =
(
r′PA,TrPA,T

)−1
r′PA,TrHF,T. While this is a simplified first approach,

it suffers from some major problems. First, this is a static model for the estimated

asset weights, and therefore makes the incorrect assumption that the weights are

constant over the estimation time period. Second, a window size k must be chosen,

therefore having to deal with the trade-off of using more data to obtain better es-

timates but decreasing the relative importance of more recent observations. Lastly,

the most apparent problem is the lack of the
∑n

i=1wt,i = 1 restriction. Nevertheless,

a more appropriate estimator using this portfolio normalization constraint can be

constructed. We have the following setup:

w̄t = argmin
wt

∑

τ∈T

(rHF,τ − w′
trPA,τ )

2
where

n∑

i=1

wt,i = 1

This can be solved by Constrained Least Squares (CLS) from Chipman and Rao

(1964) and Tintner (1952). In the context of this problem, estimates are obtained

by:

w̄t = ŵt −
(
r′PA,TrPA,T

)−1
1
(

1′
(
r′PA,TrPA,T

)−1
1
)−1

(1′ŵt − 1)

Note that although the above solution does place a normalizing restriction on the

sum of the estimated weights, it still allows for individual weights to take any real

value. That is, an estimated weight of 120 or -80 could be obtained, thereby implying

an unrealistic 12,000% or -8,000% weight on that asset class. This explosive scaling
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effect happens widely in the presence of multicollinearity in the explanatory variables.

Due to the prevalence of this in asset returns, the undesired scaling issue can be

avoided by imposing the “no short selling” assumption of the DPM on the above

CLS. That is, constrain the CLS with non-negativity: wt,i ≥ 0, ∀i ∈ {1, . . . , n}.

Let us refer to this setup as the Inequality Constrained Least Squares (ICLS) method

similar to Judge and Takayana (1966) and Liew (1976). This is easily solved via

quadratic optimization.

Herein, the original OLS rolling regression approach will not be considered due

to its gross misspecification for this problem. Instead, the CLS and ICLS approaches

will be explored due to their increased suitability.

1.5.2 Näıve Kalman Filtering

Amenc et al outline an approach for using Bayesian inference to solve the dynamic

state space model. The model is set up as follows:

rHF,t = w′
trPA,t + ǫt, ǫt ∼ N(0, σ2

ǫ )

wt = wt−1 + ηt, ηt ∼ N(0, Q)

This is a classic state space model which is analytically solvable via the Kalman

Filter. Although this approach correctly identifies the problem as a dynamic model,

it lacks the portfolio normalization constraint
∑n

i=1wt,i = 1. So, similar to the

least-squares based techniques detailed above, we propose more suitable methods by

adding in this constraint.

1. Constrained Kalman Filtering via Restricted Covariance Structure

Consider the constraint
∑n

i=1wt,i = 1. It can be shown that

n∑

i=1

Cov (wt,j, wt,i) = 0, ∀j ∈ {1, . . . , n}
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Therefore, we can obtain a constrained estimation structure by choosing the

initial weight uncertainty matrix Σ0 and transition innovation matrix Q such

that:

Σ01 = 0, Q1 = 0 and by symmetry Σ′
01 = 0, Q′1 = 0 (1.6)

Now, with the lack of better information, assign to V ar(wt,i) the average un-

conditional variance implied by the α parameter from the DPM for consistency

purposes. Then, let

Cov(wt,i, wt,j) = −
V ar(wt,i)

n− 1
, ∀j 6= i,

thereby satisfying the above restriction and creating a spherical covariance

structure. Nevertheless, if there does exist information about a more suitable

covariance structure, but it does not satisfy the above properties, we can project

the original covariance matrices onto the space satisfying those constraints:

ΣP
0 =

(

I − Σ01 (1
′Σ01)

−1
1′
)

Σ0 and QP =
(

I −Q1 (1′Q1)
−1

1′
)

Q

2. Constrained Kalman Filtering via State Projection

Chia (1985) and Simon and Chia (2002) detail a method to first derive the

unconstrained state estimate and then project it onto the constraint surface.

This can easily be applied in the context of this application. When computing

the posterior distribution of the weights, we can arrive at the projected distri-

bution N(µP
t|t,Σ

P
t|t) by first computing the unconstrained solution N(µt|t,Σt|t)

in the classic manner, and then projecting via:

Υt = Σt|t1
(
1′Σt|t1

)−1
µP
t|t = µt|t −Υt

(
1′µt|t − 1

)
ΣP

t|t = (I −Υt1
′) Σt|t

Conveniently, for calculating the prior distribution/forecasts for the weights,

our transition function is already normalized with respect to the posterior
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weights from the previous period, thereby already projecting into the con-

strained space. Again, we assign to V ar(wt,i) the average unconditional vari-

ance implied by the α parameter from the DPM for consistency purposes.

Note that the estimation error covariance Σ0 of this method is always going

to be greater than or equal to that obtained by using the restricted covari-

ance matrix method (Ko and Bitmead, 2007). This is because in the restricted

covariance matrix method, the transition innovation covariance matrix Q is as-

sumed to be the true process noise covariance, thereby resulting in the optimal

state estimates for the system. However, in the projection method, the tran-

sition innovation covariance matrix Q may be inconsistent with the estimated

transition innovation process. Nevertheless, if Q satisfies (1.6), then both these

methods are equivalent.

Also, it is possible to incorporate inequality constraints into the Kalman Filtering

approach as we did for the ICLS. Gupta and Hauser (2007) detail a method to do so

using quadratic optimization. We do not implement this approach here since gener-

ally the Constrained Kalman solutions above produce estimation which is consistent

with the desired non-negativity constraints, thereby negating the need to implement

them in the estimation procedure.

Note that the CN-DPM presented above is analytically solvable via a modified

Kalman filtering approach, however it incorporates an approximation for the Dirich-

let compositional structure suggested by the DPM. This importantly requires rede-

fined error distributions at each period. As well, note that the CN-DPM is a special

case of the Constrained Kalman Filtering via Covariance Structure class of models

due to it’s compliance with the covariance restrictions. Furthermore, due to the

period-by-period redefined error distributions, it also allows for the non-negativity
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constraint.

Again, due to the näıve Kalman Filter’s misspecification for this problem, we

only explore the Constrained Kalman via Covariance Structure (CKalCov) and State

Projection (CKalProj) methods.

1.6 Simulated Portfolio Trading Comparison

We now compare the DPM and CN-DPM with the presented alternative estimation

techniques on various simulated portfolio environments to motivate the effectiveness

of the procedure.

1.6.1 Simulated Assets & Trading

First, sets of simulated monthly asset returns are developed under the following

example model:

ri,t ∼ t(µi, σ
2
i , νi)

where

µi ∼ N(0.007, 0.0032), σ2
i ∼ IG(2.5, 0.004),

νi ∼ IU(0, 0.5), Σi ∼ IW (I, 8)

with contemporary correlation induced by a Gaussian copula having correlation im-

plied by Σi. This example parametrization was motivated by Gelman and Hill (2006).

Nevertheless, we will later demonstrate that the results also hold with real asset re-

turns. For the following simulations, the case of 6 investable assets is considered.

Using these simulated assets, there are various ways to construct time series

of portfolio weights. Let us first construct simulated portfolio asset weights using

the previously motivated random-walk process from (1.4). Using these simulated

weights, the simulated time series of hedge fund returns is constructed via rHF,t ∼
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t(w′
trt, σ

2
ǫ , νHF ). A Student-t distribution is used here since it is reasonable to observe

that returns which are orthogonal to the set of included explanatory assets can

potentially be very “fat-tailed” in nature due to some trading activities such as

market-making, high frequency trading, highly illiquid asset pricing, etc.

The objective is to track the weights on each of these assets, but due to the unob-

servable nature of the true portfolio weights, the accuracy of the weight predictions

can never be observed in the real world setting. Therefore, to gain a proxy of how

close these weights are being estimated, we can create the forecasted set of weights

from the model and then determine how close we are to the one-step-ahead returns

from the hedge fund index. That is, we want to minimize the following error:

ǫt = rHF,t − E[wt|Ft−1]
′rt

There are various measures of accuracy for this estimation. We explicitly define the

following four measures for use throughout the remainder of the paper:

Measure Name Expression

Forecasted Root Mean Squared Error (F-RMSE)
√

1
T

∑T
t=1(rHF,t − E[wt|Ft−1]′rt)2

Forecasted Mean Absolute Error (F-MAE) 1
T

∑T
t=1 |rHF,t − E[wt|Ft−1]

′rt|
Forecasted Pearson Correlation (F-Corr) corr

(
rHF,t, E [wt|Ft−1]

′ rt
)

Forecasted R2 (F-R2) 1−
∑T

t=1(rHF,t−E[wt|Ft−1]′rt)
2

∑T
t=1(rHF,t−r̄HF )

2

Note that this F-RMSE value is exactly the same as the “tracking error” concept

used commonly in portfolio management to describe how close the returns of a port-

folio track to the returns of a given benchmark index. In our case, the benchmark

index is simply the hedge fund index of interest.

We run 100 simulations and estimate the portfolio weights using the DPM, CN-

DPM, CLS, ICLS, CKalCov, and CKalProj. First, we compare the simulation results
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using Forecasted Mean Absolute Error in Figure 1.4. The DPM and CN-DPM pro-

cedures produce smaller and more precise forecasted mean absolute deviation values,

and therefore more accurate forecasted returns than the other methods. The con-

strained Kalman Filter methods, CKalCov and CKalProj, generally produce the next

best best results, however, with a median forecasted MAE of 0.0082 and 0.0081 ver-

sus the DPM’s value of 0.0057, the Kalman Filters perform about 43% worse. This

is compared to using rolling window CLS and ICLS, which give median forecasted

MAE values of 0.0085 and 0.0079, 49% and 39% worse than the DPM. As well, the

CN-DPM has a median forecasted MAE of 0.0078, second to the DPM.

0
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0.015
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DPM CN−DPM CLS ICLS CKalCov CKalProj

Forecasted Mean Abs Error (Dirichlet/Student−t Simulation, 6 Assets, 100 Sims)

Figure 1.4: Simulation Results – Forecasted Return MAE

Another way to compare these estimation procedures is the Forecasted Coeffi-

cient of Determination, F-R2. Naturally, this does not consider scale, as the MAE

measure does, but it is useful to consider the proportion of variation in the hedge

fund returns explained by the forecasted model. Examining the plot in Figure 1.5,

the DPM produces much stronger forecasted R2 values than the other methods, thus
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supporting its more accurate asset weight estimation. The DPM and CN-DPM pro-

duce median forecasted R2 values of 0.979 and 0.965, respectively, as compared to

rolling CLS and ICLS rolling with 0.938 and 0.944, and the CKalCov and CKalProj

with 0.960 and 0.960. Similar plots can be created for the F-RMSE and F-Corr

measures. These plots display similar results as those shown here.
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Forecasted R2 (Dirichlet/Student−T Simulation, 6 Assets, 100 Sims)

Figure 1.5: Simulation Results – Forecasted Return R2

1.6.2 Increasing Number of Assets

Since the dimension of explanatory assets has the potential to grow large, we explore

the effect of increasing the number of investable assets. Below, the same simulations

are ran, but while increasing the number of investable assets in the simulated hedge

fund index construction.

In Figure 1.6, the DPM procedure is used to estimate weights on the simulated

assets, and then those weights are used to construct the forecasted return MAE

values for each simulation. As expected, as the number of assets increases, the
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Figure 1.6: DPM Forecasted Return MAE vs. Number of Assets

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

2 3 4 5 6 7 8 9 10
Number of Assets

Forecased Return MAE (CKalCov Estimation, 100 Sims)

Figure 1.7: CKalCov Forecasted Return MAE vs. Number of Assets

forecasted return MAE increases. However, considering that the dimension of the

estimation space is increasing, and therefore the potential estimation outcomes are
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exponentiating, the forecasted return MAE values do not degrade unreasonably. As

well, although adding additional assets increases forecasted return MAE, as expected,

we do observe that each new asset has a decreasing marginal effect on this accuracy

measure.

For comparison, let us consider one of the constrained Kalman Filtering proce-

dures from above, the CKalCov. Figure 1.7 uses this method to estimate weights on

the simulated assets, and then constructs the forecasted return MAE values for each

simulation. Here, the forecasted return MAE values degrade at a much faster rate

than with the DPM. In fact, this relationship is unfortunately much more linear as

the number of assets increase. Furthermore, at large numbers of assets, there are

many more extreme values for inaccurate forecasted return MAE.

Although they are not exhibited here, similar plots for CLS and ICLS demon-

strate even less accurate results. Therefore, the DPM is increasingly favored when

considering a sizable potential space of investable assets. In the real world, we ob-

serve that hedge funds can invest in a vast number of potential assets, thus the DPM

becomes an even more useful tool for estimating weights on that asset set.

1.6.3 Real Assets & Model Hedge Fund Example

To further motivate the suitability of the DPM, we construct a realistic hedge fund

trading model similar to the one proposed in Khandani and Lo (2007). Then, the

resulting asset weights are used to create a model hedge fund return series. We

then use this return series, along with the portfolio asset returns, in the estimation

procedures to obtain estimates for the asset weights. Finally, these estimated weights

are compared to the true asset weights to infer accuracy. As the portfolio assets, we

use the daily returns from the four largest sectors in S&P 500 Index (Technology,

Financials, Health Care, and Energy) from January 4, 2010 to February 13, 2013.
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Let us construct the model trading strategy as follows. Given a set of N equity

sectors, consider a strategy where these are held proportional to their market capital-

ization w̃, but these weights are decreased or increased proportional to previous over

or under-performance relative to their average. That is, the sectors which have pre-

viously over-performed are relatively under-weighted, while the sectors which have

previously under-performed are relatively over-weighted. This is a form of “contrar-

ian” strategy by under-weighting yesterday’s winners and over-weighting yesterday’s

losers. For our example, we use the aggregated sum of daily returns over the last 30

days for each asset (Rt−1,i ≡
∑t−1

τ=t−30 rτ,i) when constructing our over/under-weight

values. Specifically, the following asset weights are constructed:

wt,i = w̃t,i − (Rt−1,i −Rt−1,m) , Rt,m ≡
1

N

N∑

i=1

Rt−1,i

These are taken as our “true” weights used to construct the hedge fund return series.

Now, to compare the accuracy of our procedures, we look at the estimation of our

hedge fund’s weight process. Figure 1.8 exhibits the resulting weight point-estimates

and confidence intervals (or respective Bayesian credible intervals) for the S&P 500

Health Care Sector.

Visually, the DPM does the best job of tracking the true weight time series with

an MAE of 1.16%, while the CN-DPM comes in a close second with 1.23%. For

comparison, the OLS methods perform 43-75% worse, while the Kalman methods

perform 12-21% worse, across the different component assets. As well, not only does

the DPM accurately estimate the underlying weight process, but also it adjusts to

large changes in the weights very quickly.

The rolling CLS and ICLS, as expected, take quite a few periods to adjust to large

changes in the weights since the importance of each observation is given equal weight
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Figure 1.8: Estimated Weight Accuracy Comparison
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in determining the resulting weight estimates. Therefore, a new portfolio return ob-

servation does not have a large impact on the weight estimation, especially if a large

window size is used. However, if too small a window size is used, poor estimates and

confidence intervals are obtained since the estimation sample is too small. Further-

more, since there is no intertemporal structure placed on weight transitions, we can

obtain unreasonably large jumps in the estimated weights due to multicollinearity in

the palette asset returns.

The constrained Kalman filtering methods do a better job, however they still do

not track the true weight series as accurately as the DPM. This is especially evident

when looking at quick changes in the weight values, however it is not as severe as

compared to the rolling CLS and ICLS since the structure of the Kalman Filter al-

lows for more appropriate updating of the weight estimation after obtaining a new

portfolio return observation. Furthermore, similar to the results of the previous sub-

section, as the number of component assets increase, the DPM performs increasingly

better, relative to the other methods.

1.7 Empirical Results & Comparison

1.7.1 Hedge Fund Data

We apply the DPM estimation methodology to monthly return data for the Hedge

Fund Research Fund Weighted Composite Index (HFRIFWC) from January 1995 to

October 2012. These return values are reported net of individual fund managers’

fees. Since this index is constructed by compiling self reported hedge fund returns

from individual managers, there are a few potential biases to identify in the data.

First, there is no requirement that fund managers report their monthly returns,

therefore only a subset of all funds report into these aggregated indices. Some hedge

fund strategies have a maximum asset size which can be effectively invested, thereby
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creating a cap on the total fund size. In this case, some funds who have reached their

maximum size may have no incentive to report their returns. This creates a downward

bias in the self reported return indices if these missing funds are outperforming the

average. On the other hand, there is a selection survivorship bias in the self reported

returns since only the funds that are continuing to operate and therefore have not

experienced large losses are reporting returns. This creates an upward bias in these

self reported returns. Nevertheless, a large portion of fund managers do report

returns, mainly for advertising purposes. Therefore, this aggregated index is the

best proxy available for the whole hedge fund industry’s returns to investors. So, we

can reasonably use this return series in estimating the weights on our set of palette

assets in the following sections.

1.7.2 Palette Assets & Parametrization

Since the universe of investable assets is quite large, it is very difficult to estimate

weights on the complete set. However, since the goal is to estimate the invested

weights on the assets that the value-weighted aggregate of hedge funds is invested in,

this problem is simplified significantly. Instead of trying to estimate weights on each

and every single investable asset, we can estimate the weights on portfolios of assets

(or indices) representing broad classes of assets (e.g. US equity, emerging market

equity, high yield bonds, etc.). Since the total hedge fund industry is so large, it

is reasonable to make the assumption that the value weighted aggregate of hedge

funds is invested in each of these broad asset classes in an approximate weighting

scheme that is similar to the asset class’s value weights. Therefore, instead of trying

to estimate the weights on a potentially infinite set of individual assets, it is possible

to estimate these exposures on a small subset of asset classes. Due to the smaller size

of the number of asset classes, the dimension of this problem is significantly reduced,
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Color Asset Class Name

Barclays Municipal Bond Index
Barclays Short Term Treasury Bond Index
Barclays Corporate High Yield Bond Index
Deutsche Bank US Dollar Long Futures Index
Dow Jones - UBS Commodity Index
MSCI Emerging Markets Index
MSCI EAFE Index (Europe, Australasia, Far East)
MSCI US Equity Index

Table 1.1: Asset Class “Palette”

and therefore the resulting estimates are dramatically improved.

Herein, the following indices, similar to those used in Fung and Hsieh (1997), are

used as a proxy for the asset classes that the hedge fund industry is investing in.

Table 1.1 enumerates the asset class list and color key that will be used throughout

the remainder of this paper. Note that it is not necessary to restrict ourselves to this

specific set of asset classes. The methodology described above can be applied to any

asset set of interest.

As well, the parametrization of the error distributions must be specified. For

the transitional portion of the model, the Dirichlet errors are parametrized by the

multivariate concentration parameter α. Intuitively, since the Dirichlet distribution

is the conjugate prior of the multinomial distribution, this α vector can be viewed

as pseudo-counts for the prior distribution on the transitioned state of asset weights.

In other words, it is the relative weight of the prior when updating with the return

observation to obtain the posterior asset weight distribution at a given time period.

Recall that
∑

i αi = α, therefore the relative weight on the prior is given solely by

α, where the weight on a single observation is 1. This conveniently allows us to

effectively quantify the influence that a single new observation has on each step in

the estimation procedure as 1/(1 + α).
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Nevertheless, it is convenient to perform Bayesian model comparison via Bayes

Factors in this application. As essentially a likelihood ratio between competing model

parametrizations, we simply can compute the marginal likelihoods for each α and

choose the largest value. Figure 1.9 shows the log marginal likelihood values for the

DPM procedure estimated at various values for α. The maximum value is achieved

at α = 1600. We note that, deviations around ±70% of this choice of α do not

change the following results materially.
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Figure 1.9: Choice of Parameter α

Lastly, the observational portion of the model needs to be specified. Therefore,

the variance σ2
ǫ and the degrees of freedom ν of the Student-t distribution need to be

chosen. Here, there is more flexibility in the choice of these parameters based upon

the selection of palette assets and beliefs about the unexplained portion of returns.

The better the palette assets represent the investable universe, the smaller the choice

of σ2
ǫ . As well, the more likely it is to observe extreme values in the unexplained

returns, the smaller the value of ν is desired. Here, σ2
ǫ = 0.01 and ν = 6 are used

since the above palette assets represent the investable universe well, but can allow
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for occasional extreme values in the unexplained component due to the large kurtosis

commonly observed in financial return data (Mandelbrot, 1963).

Herein, we proceed with the above parametrization. Otherwise, we note that the

Particle Learning work of Carvalho, Johannes, Lopes, and Polson (2010) could be

further applied to the DPM estimation algorithm to allow estimation of the error

parametrization at the same time as the estimation of the latent weight values.

In the following sections, our methods are used to estimate weights on the set of

palette assets for the aggregate hedge fund return index. Then, using these weights,

the model is used to forecast the one-step-ahead predicted weights to create a time

series of “forecasted” index returns. These returns are plotted along with the ob-

served index returns to compare how precise the estimation is in terms of forecasted

return accuracy.

1.7.3 Rolling CLS & ICLS

From the previous sections, the ICLS has strictly produced more accurate results

than the CLS without the positivity constraint. Hence for conciseness, only the ICLS

results are exhibited. Figure 1.10 shows the forecasted returns and estimated weight

plots for the Hedge Fund Research Fund Weighted Composite Index (HFRIFWC)

using the rolling ICLS estimation method.

Notably, excessively large weights are placed on high yield bonds and short-term

treasury securities. As well, we observe occasional periods with very large jumps in

the portfolio weights. This effect is caused by multicollinearity between the palette

asset returns, and therefore the static OLS procedure has a difficult time separating

the ultimate return contribution of specific assets. Because of this, the resulting

forecasted returns do no track the index well, thereby inferring poor asset class

weight estimates.
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Figure 1.10: Forecasted Returns & Estimated Weights - Rolling ICLS (HFRIFWC)

Nevertheless, we see a large increase in the weight on short-term treasury bills

around the recent economic downturn. High yield bonds have a very large weight

until 2002. Equity investments seem to be originally focused in US stocks, with a

general transition to emerging markets and Europe, Australasia, and the Far East

(EAFE) investments over the sample period. Finally, the plot shows an extra large

investment weight in municipal bonds, with a large spike starting around 2001.

This is used as a baseline to see how the three dynamic models compare to this

static model’s estimation approach.
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1.7.4 Constrained Kalman Filter

Since the results for the CKalCov and CKalProj methods are very similar, we only

exhibit CKalCov here. Figure 1.11 shows the forecasted returns and estimated weight

plots for the Hedge Fund Research Fund Weighted Composite Index (HFRIFWC)

using the CKalCov estimation method.
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Figure 1.11: Forecasted Returns & Estimated Weights - CKalCov (HFRIFWC)

The Constrained Kalman Filter immediately looks like a superior model from

the forecasted return comparison perspective. There are periods of time where it is

inaccurate, but it is much better than the rolling OLS based technique. However, the

estimated weights stay alarmingly even over the entire time horizon. This is caused

by the spherical and time-invariant weight transition covariance structure combined
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with the contemporaneous correlation observed across financial asset returns. There

are some values that increase or decrease, and not surprisingly, these are generally

consistent with the direction of change in the weights from the rolling regressions.

That is, there is larger weight placed on municipal bonds and short term treasuries,

while a slowly decreasing weight is placed on US equities.

The most noteworthy attribute of the estimation is the small, but clear jumps in

the weights around the dates of economic downturns, thereby indicating a shift in

asset allocation occurring in the hedge fund industry in those periods.

1.7.5 Dirichlet Portfolio Model

Figure 1.12 shows the forecasted returns and estimated weight plots for the Hedge

Fund Research Fund Weighted Composite Index (HFRIFWC) using the DPM esti-

mation method.

Looking at the forecasted returns plot, the DPM does an excellent job of tracking

the forecasted index returns. In general, we see fewer periods of poor estimation, as

we did with the rolling regressions and the Kalman Filter methods.

As well, the weight estimation results are much more dynamic. Not only does the

plot show clear jumps in the weights around economic downturns and also subsequent

shifts to short-term treasuries, but also increases in municipal bond investments over

the following years. Again, there is a noticeable shift from US stocks to increasing

investments in emerging markets and EAFE seen over the recent years. Furthermore,

a sizable investment in high yield corporate bonds is observed until 2000, when this

weight shifted to investment grade corporate credit from 2000-2006, after the tech

bubble.Finally, overall equity and fixed income exposures vary with economic cycles,

which is consistent with beliefs about widespread portfolio allocation dynamics.
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Figure 1.12: Forecasted Returns & Estimated Weights - DPM (HFRIFWC)

1.7.6 Conditionally Normal Dirichlet Portfolio Model

Figure 1.13 shows the forecasted returns and estimated weight plots for the Hedge

Fund Research Fund Weighted Composite Index (HFRIFWC) using the CN-DPM

estimation method.

The conditionally normal approximation of the DPM also provides accurate fore-

casted tracking of the hedge fund index. Generally the same changes in investment

patterns are observed. However, weights remain more evenly distributed across all

the asset classes than observed in the original DPM estimates. This effect is the

result of the beta distribution’s mode being closer to the bounds of its support. In

other words, its skewed mode pulls values closer to either very large or very small val-
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Figure 1.13: Forecasted Returns & Estimated Weights - CN-DPM (HFRIFWC)

ues, whereas a normal approximation distributes probability over the support with

no skew. Lastly, note that this effect does not necessarily imply less or more accurate

weight estimation since the forecasted return MAE value is very close to that found

with the DPM estimation.

1.7.7 Comparison & Results

In the previous section, the DPM and CN-DPM demonstrated a superior job in con-

structing forecasted returns which were consistent with the hedge fund return index

observed returns. Since the true invested hedge fund weights cannot be observed, the

accuracy of the weight estimation cannot be directly assessed. Nevertheless, these

forecasted returns give the best proxy for measuring accuracy using the information
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in this setup.

The DPM and CN-DPM produce asset weight shifts which are generally consis-

tent the broad beliefs about how investment managers have shifted around their asset

allocation weights over the last 15 year period. Examining the estimated changes in

weights, perhaps the most interesting pattern is the systematic increase in invest-

ment in municipal bonds during recessions, and then a subsequent decrease during

economic recovery. This is consistent with the perceived view that municipal bonds

are a relatively safe investment, and therefore during times of high economic un-

certainty they provide a reasonably safe investment vehicle. This is supported by

Appleson, Parsons, and Haughwout (2012) who find that municipal defaults are less

likely connected to economic downturns than defaults on corporate bonds. There-

fore, observing hedge fund managers increasing investment flows to municipal bonds

during these periods is easily rationalized. Nevertheless, the low risk nature of mu-

nicipal bonds has come under much debate, especially since late 2007 to early 2008

when many municipal bond prices declined without seeing relative increases on sim-

ilar duration swap contracts used to hedge interest rate risk (Deng and McCann,

2012).

Furthermore, a comparison of the sample statistics for the estimation methods

is shown in Table 1.2. This table provides a comparison of the MAE, RMSE, R2,

correlation, mean, and standard deviation of the forecasted returns of the six esti-

mation methods. Note that non-forecasted returns are constructed by applying the

estimated weights to the same period returns, while the forecasted returns are the

forecasted weights applied to the one-period-ahead returns. Here, the DPM and CN-

DPM consistently outperform the other methods in terms of tracking error, mean

absolute error, correlation, and R2. As well, they generally do the best in replicating

the respective mean and standard deviation values.
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In all of the above estimation techniques, we point out that large weight is es-

timated on short-term treasury securities. As identified in Getmansky, Lo, and

Makarov (2004), hedge fund managers commonly employ smoothing in their monthly

self reported returns. Since these treasury assets are perceived to be risk free and

have a very low return volatility as compared to the remaining assets, artificially low

volatility in the hedge fund index can lead to a larger weight estimated on assets

with low volatility themselves, like the short-term treasuries. From the hedge fund

managers’ perspective, this smoothing has the effect of improving their funds’ ob-

served risk-adjusted performance. Second, this self reported return smoothing can

arise from the pricing of illiquid assets (Fisher et al., 2003; Kadlec and Patterson,

1999). Therefore, when using self reported hedge fund return data, it is common to

estimate a desmoothing model on the return data. When implementing the model

from Getmansky, Lo, and Makarov (2004) on the hedge fund return index, the re-

sulting portfolio weight estimate on the short-term treasuries decreases significantly,

while the weights on the remaining assets scale up, proportionately to each other.

HFRIFWC

Non-Forecasted Index DPM CN-DPM CLS ICLS CKalCov CKalProj

Mean 0.00748 0.00457 0.00460 0.00516 0.00478 0.00430 0.00431
Standard Deviation 0.02100 0.02014 0.02003 0.02128 0.02100 0.02068 0.02078
RMSE 0 0.00921 0.00917 0.00970 0.00980 0.01021 0.01027
Mean Abs Error 0 0.00626 0.00644 0.00699 0.00670 0.00752 0.00756
Correlation 1 0.90893 0.90949 0.89930 0.89765 0.88967 0.88875
R2 1 0.81062 0.81240 0.78994 0.78569 0.76718 0.76474

HFRIFWC

Forecasted Index DPM CN-DPM CLS ICLS CKalCov CKalProj

Mean 0.00748 0.00414 0.00408 0.00477 0.00447 0.00412 0.00415
Standard Deviation 0.02100 0.02079 0.02084 0.02265 0.02181 0.02116 0.02125
RMSE 0 0.01049 0.01074 0.01181 0.01145 0.01076 0.01079
Mean Abs Error 0 0.00737 0.00760 0.00844 0.00806 0.00790 0.00791
Correlation 1 0.88439 0.87900 0.86160 0.86529 0.87986 0.87969
R2 1 0.75509 0.74326 0.68966 0.70851 0.74224 0.74125

Table 1.2: Replication Summary Statistics (Monthly)
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1.7.8 Negative Portfolio Weights

Throughout this paper, we have assumed and motivated the restriction of non-

negativity on the latent asset class weights. Nevertheless, it can be mentioned that

an estimation method which allows for negative weights can easily be constructed

in the style of the DPM setup. The idea is to construct two portfolios, one for long

(positive) positions, and another for short (negative) positions. This allows the long

portfolio to capture the variation in the hedge fund index explainable by the positive

asset returns, as well as the short portfolio to capture the variation explainable by

the negative asset returns. Then, with estimated distributions for these sets of pos-

itive and negative weights, we can estimate a time varying combination factor used

to obtain an overall portfolio weighting, thereby potentially increasing the overall

explanatory power of the portfolio.

One way to do this is to estimate these separate long/short portfolios in each

time period, with respective weights w+
t and w−

t . A combined portfolio then can be

constructed via wt = (1 + γt)w
+
t − γtw

−
t where the time varying combination factor

γt follows a Gaussian random walk model γt ∼ N
(
γt−1, σ

2
γ

)
. This combination

factor can also be estimated via a similar sequential Monte Carlo procedure. In our

estimation problem, not surprisingly, this combination factor was generally found to

be γt ≈ 1, implying that the aggregate hedge fund industry portfolio does not have

negative exposures to these asset classes.

1.8 Applications

1.8.1 Replication of Investment Strategy

The idea of replicating hedge fund investment strategies through low cost, liquid

investments is not a new idea. Many large securities firms currently have products
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which seek to do exactly this. Many of these take a bottom-up approach which

attempts to identify the types of trades and systematic patterns that funds employ

to create their asset allocation, then implement these ideas in an algorithmic manner.

We instead take the top-down approach which is much more statistically sound, as

it is attempting to identify component exposures to candidate sets of asset classes,

in order to best track the time series of returns.

In order to create a replicating portfolio in this manner, one simply needs a set

of relative weights wRep on the asset set of interest. Ideally, these weights would be

the same as the true hedge fund invested weights, but these are latent. Therefore,

the DPM’s expectation of the weights given all observable information up to that

time can be used:

wRep
t ≡ E[wt|Ft−1]

=
wRep

t−1 ◦ (1 + rPA,t−1)
∑n

i=1w
Rep
t−1,i(1 + rPA,t−1,i)

=
E[wt−1|Ft−2] ◦ (1 + rPA,t−1)

∑n
i=1E[wt−1,i|Ft−2](1 + rPA,t−1,i)

= . . .

Using these weights, one can invest in the assets of interest and construct the

appropriate replicating portfolios. Naturally, the goal is to construct portfolios which

have very similar returns to investors as the hedge fund indices being replicated.

Since these indices are non-investable, access to these returns is usually obtained

through investing in a fund-of-funds, which imposes their own aforementioned layer

of fees. Therefore, the raw index returns are adjusted for these fund-of-fund fees

for real comparison purposes. Nevertheless, we note that there exists upward bias

in these index returns that remains unadjusted for. Figure 1.14 shows a plot of

the cumulative return to investors for the adjusted HFRIFWC Index with an initial
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Figure 1.14: Cumulative Return Comparison (HFRIFWC)

The DPM and CN-DPM do a very good job in replicating the return series.

Notably, the rolling CLS does the worst, due to its lack of positivity restriction

on the weights, resulting in in-sample over-fitting. The CKalCov and CKalProj

methods do a decent job, however their poor estimation of weights contributes to

tracking inaccuracy and under-performance before 2000.

Finally, it is important to note that we do not take a stand on whether imple-

mentation of this replication is a good investment strategy. The answer to this lies in

whether the hedge fund industry delivers superior risk adjusted returns. The answer

to that is outside the scope of this paper.
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1.8.2 Intraperiod Return & Volatility Approximation

Since funds only disclose their investment returns at discrete intervals, typically

monthly or quarterly, it is difficult for investors to know how their invested capital

is performing in the time between. They could have gained or lost a lot of wealth

over the course of a few days, but they will not realize this information for poten-

tially months later. This presents an informational problem, since the knowledge of

this investment performance has clear implications for consumption decisions in the

current period.

As well, it is very common to see portfolio managers for large pension funds,

endowments, family offices, etc. not only invest in individual assets, but also other

investment managers. Therefore, there is value in knowing how their less liquid and

transparent hedge fund investments are performing in order to more appropriately

manage risk in the rest of their overall portfolio. Hence, having an approximation of

these intraperiod hedge fund return and volatility values is of great value.

With the DPM setup, we have an effective way of approximating these intraperiod

returns. Consider the following setup where we want to approximate the intraperiod

returns for τ units of time past reporting period time t:

wt−1 wt wt+1 wt+2rPA,t−1, rHF,t−1 rPA,t, rHF,t rPA,t+τ , rHF,t+τ

t− 1 t t+ τ

Figure 1.15: Intraperiod Timeline Illustration

We are interested in determining the value of the holding period return and

volatility over time period t+ τ given the observed information at time t+ τ . That

is, we want to estimate E[rHF,t+τ |Ft+τ ] and V ol[rHF,t+τ |Ft+τ ]. However, note that
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Ft+τ = {Ft, rPA,t+τ} since the only new information observed since time t is the

return on the palette assets. Since the true weights cannot be observed to use in this

calculation, we can use our estimated weights from time t. Therefore, the estimate

of intraperiod return, using the DPM model’s estimates, simply becomes:

E [rHF,t+τ |Ft+τ ] = E [rHF,t+τ |Ft, rPA,t+τ ]

= E [wt|Ft]
′ rPA,t+τ

Similarly, an estimate of the intraperiod volatility can be computed:

V ol [rHF,t+τ |Ft+τ ] = V ol [rHF,t+τ |Ft, rPA,t+τ ]

=
√

E [wt|Ft]
′ Σ̂rPA,t+τ

E [wt|Ft] + σ2
ǫ

where Σ̂rPA,t+τ
is an intraperiod covariance matrix for the palette assets. This matrix

for the latent covariance structure can be constructed in various ways, including but

not limited to Stochastic Volatility (Jacquier, Polson, and Rossi, 1994, 2004) and

DCC-GARCH (Engle, 2002) approaches. Furthermore, the same expression above

can be used to compute forecasted hedge fund volatility if the current period is taken

to be time t and we want to forecast τ time into the future.

1.9 Conclusion & Discussion

This paper has presented a Bayesian dynamic model, the Dirichlet Portfolio Model

(DPM), for the hedge fund industry weight transition process and aggregate return

observations. We then exhibited a numerical solution to this model using sequen-

tial Monte Carlo methods, as well as a conditionally normal approximation (CN-

DPM) which was solved analytically. In order to motivate the appropriateness of

this dynamic model, other models and their respective solutions were compared.

The simulated and model hedge fund results showed that both with simulated or
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real assets, as well as under simulated or model trading, the DPM produces more

accurate estimates of the underlying weights as compared to the results produced

by the other estimation methods. Overall, the DPM provided superior results across

various measures of suitability. Interestingly, the estimation results on the the hedge

fund industry aggregate return index identify a systematic increase in exposure to

municipal bonds during economic downturns, and a subsequent decrease in exposure

during economic recovery periods, which is consistent with the notion that defaults

on municipal bonds are less connected to economic downturns than defaults on cor-

porate bonds.

From the foundational DPM, there are many future extensions from this starting

point. One of the challenges of the DPM estimation procedure is having to pre-specify

the distributional error parameters, α, σ2
ǫ , and ν. Just as there is value in obtaining

the latent weight estimates, it would also be insightful to learn the magnitude of these

tuning parameters during the estimation process. This can be achieved by applying

the parameter learning concepts from Carvalho, Johannes, Lopes, and Polson (2010),

Storvik (2002), Fearnhead (2002), or Liu and West (2001).

Furthermore, we identify applications of this methodology to both creation of

hedge fund industry replicating portfolios, as well as intra-reporting-period return

and volatility estimation. There is large value in being able to approximate these

intra-reporting-period returns for both current consumption choices and various risk

management decisions. As well, being able to create replicating portfolios from the

asset class decomposition has the potential to construct more transparent portfolios

with much lower cost structures. Therefore, the Dirichlet Portfolio Model is a con-

venient technique for decomposing unobservable portfolio compositions, allowing for

future analysis on the dynamics of these weight processes.
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2

Hedge Fund Portfolio Decomposition:

Joint Estimation of Net Leverage and Asset

Allocation Dynamics

2.1 Abstract

This paper extends a class of dynamic compositional state space models from Korsos

(2013b) for estimating latent portfolio compositional weights when only observing

the aggregate portfolio and underlying asset returns. Here, we augment the previous

setup by demonstrating how to implement the joint estimation of net portfolio lever-

age dynamics. As well, by incorporating recent work for parameter learning in state

space models, we detail how to not only sequentially estimate the time varying latent

portfolio weight and leverage values, but also the distributional tuning parameters.

We illustrate this technique on the estimation of asset class weights and leverage on

a set of aggregate hedge fund indices from 1995 to 2012. Finally, using the resulting

time series of hedge fund portfolio compositional values, we estimate the same-period

price impact of portfolio allocation changes.
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2.2 Introduction

In the field of portfolio risk attribution and analysis, extensive work has been done

on discovering cross-sectional risk factors and estimating exposures to these various

sources of risk. For years, this linear risk factor based approach has provided a

convenient way to decompose investment portfolios into common components to

explain variation in portfolio returns and then assess various economic questions

such as pricing implications, managerial skill, as well as many others. Comparatively,

little work has been done on compositional time series for decomposing and modeling

portfolio weights directly on the simplex. Therefore, rather than estimating effects

of risk factors on portfolio returns, we estimate relative portfolio weights on a set of

investable assets.

This idea of decomposing portfolio weights onto investable assets originated with

Sharpe (1992) where he estimates asset class weightings on individual mutual funds

via constrained OLS estimation. In this seminal work, he estimates both time-

invariant weights on the entire sample period, as well as uses a rolling window ap-

proach to form time-varying weight values. Fung and Hsieh (1997) extend this idea

in the application of hedge fund portfolios. They identify that static asset class

weights have much lower in-sample explanatory power than those for mutual funds,

thereby indicating that dynamic asset allocation is a more significant component of

hedge fund portfolios. With this in mind, Mamaysky, Spiegel, and Zhang (2007)

introduce a Kalman Filter based approach which more appropriately identifies risk

factor loadings as a dynamic process. Our approach acknowledges the benefits of

this dynamic attribution process while directly modeling relative portfolio weights

on the simplex, thereby developing a more suitably specified generative model.

Herein, we extend a class of compositional state space models based upon Dirich-
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let distribution latent value transitions, initially outlined by Korsos (2013b) for ob-

serving real valued portfolio return data and then modeling a latent set of time

varying portfolio compositional weights on the simplex.

wt+1 ∼ Dir

(

α
wt ◦ (1 + rA,t)

∑N
i=1wt,i(1 + rA,t,i)

)

rΦ,t ∼ t
(
w′

trA,t, σ
2
ǫ , ν
)

This approach allows a natural way to capture the variation in portfolio returns at-

tributable to time-varying asset allocation, in addition to the variation in underlying

asset returns. Since these models do not conform to the classic Gaussian-Linear form

for Kalman filtering, solutions are based on the sequential Monte Carlo approach of

Gordon, Salmond, and Smith (1993), Rubin (1987), and Smith and Gelfand (1992).

Due to the sequential nature of this estimation procedure, this allows us to not only

explain the cross-sectional variation in hedge fund returns, but also create out-of-

sample forecasts at each period of compositional asset holdings in order to evaluate

the forecasted tracking ability of the dynamic weight process.

Since many fund managers commonly employ the use of leverage to obtain their

distribution of returns, we also wish to jointly identify this effect on portfolio returns.

Similar to the relative portfolio weights, the dynamics of this net leverage amount is

also unobservable. Therefore, in this paper we extend the idea of the Dirichlet Port-

folio Model (DPM) by exhibiting how to incorporate net leverage into the estimation

procedure to model both the normalized portfolio weights, as well as a time-varying

net leverage scaling parameter. This is done via the addition of a capital appreci-

ation adjusted net leverage transition process and a respective observational model

modification:

γt ∼ N

(
γt−1

1 + rΦ,t−1 (1 + γt−1)
, σ2

γ

)
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rΦ,t ∼ t
(
(1 + γt)w

′
trA,t, σ

2
ǫ , ν
)

As well, we show how to implement the parameter learning ideas of Lopes, Carvalho,

Johannes, and Polson (2010) to perform online learning of the distributional tuning

parameters of the various stochastic portions of the models.

In order to motivate the convenience and effectiveness of this class of composi-

tional state space models, we estimate asset class level portfolio weights and leverage

multiplier values on an index of aggregate hedge fund industry returns from 1995 to

2012 using a similar asset class set to that in Fung and Hsieh (1997). Then, to gain

insight into the behavior of different types of hedge fund strategies, we examine how

these time-varying leverage levels differ across various classifications of hedge funds.

Finally, with estimates for the time-varying compositions of the various asset

classes, we analyze the dynamics of the weight processes and find that changes in

asset class investment due to active trading are consistent with the expected market

microstructure impact on prices for those assets (O’Hara, 1995; Madhavan, 2000;

Hasbrouck, 2007). That is, as hedge funds actively increase holdings in a given

asset class, a positive same-period return effect is observed for that asset, thereby

bolstering the accuracy of the estimation results.

The remainder of this paper is structured as follows: Section 2 reviews the class

of dynamic portfolio models used for estimation of time-varying portfolio weights.

Section 3 extends these results to include net portfolio leverage estimation. Sec-

tion 4 details the parameter learning procedures for online learning of distributional

tuning parameters. Section 5 outlines the hedge fund and asset class data used for

estimation. Section 6 presents the asset class portfolio weight estimation results for

the hedge fund data. Section 7 compares net portfolio leverage estimation results

across various hedge fund strategies. Section 8 estimates asset class investment ef-
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fects implied by changes in these estimated hedge fund weights. Finally, section 9

concludes.

2.3 Portfolio Weight Estimation

We consider the portfolio weight estimation problem where both the portfolio re-

turns and compositional asset returns are observable, however the relative investment

weights on those assets are never completely observable to those outside the firm. As

in Korsos (2013b), let there be an known investable set of N assets or asset classes

with time-varying latent compositional weights wt,i for each asset i at time t which

are required satisfy the budgetary restriction
∑N

i=1wt,i = 1. First, we briefly review

the initial problem of estimating the latent weights on individual portfolio compo-

sitional assets in the absence of portfolio leverage. We will use this as a foundation

for our net leverage estimation extension in the following section.

Let Ft represent the filtering of all information known at time t. Hence, this

includes all previous portfolio returns rΦ, compositional asset returns rA, and com-

positional asset weights w up to and including time t. That is,

Ft = {rΦ,1, . . . , rΦ,t, rA,1, . . . , rA,t, w1, . . . , wt} .

Define wt = (wt,1, wt,2, ..., wt,N )
′ to be an N × 1 vector of the weights on each asset

at the beginning of time period t, rA,t = (rA,t,1, rA,t,2, .., rA,t,N )
′ to be an N × 1 vector

of the compositional asset returns over time period t, and rΦ,t to be a scalar value of

the return on the portfolio over the same time period t. The chronology of the time

period notation is illustrated below:
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wt−1 wt wt+1 wt+2rA,t−1, rΦ,t−1 rA,t, rΦ,t rA,t+1, rΦ,t+1

t− 1 t t+ 1

Figure 2.1: Timeline Notation Illustration

As proposed in Korsos (2013b), let us define a compositional weight transition

model directly on the simplex S
N−1 =

{
w ∈ R

N
+ : w′1 = 1

}
via a Dirichlet random

walk model adjusted for capital appreciation of the compositional assets:

wt+1 ∼ Dir

(

α
wt ◦ (1 + rA,t)

∑N
i=1wt,i(1 + rA,t,i)

)

(2.1)

The parameter α is a scalar controlling the dispersion width of the weight transition

process. Therefore, the one-step-ahead expectation E [wt+1|Ft] of this model is the

unadjusted portfolio holdings given initial portfolio weights wt and realized holding

period asset returns rA,t:

E [wt+1|Ft] =
wt ◦ (1 + rA,t)

∑N
i=1wt,i(1 + rA,t,i)

We note that although many asset managers make the decision to rebalance their

portfolio holdings each period such that E [wt+1|Ft] = wt, this is part of the in-

vestment process choice, and therefore this is not assumed for the broad range of

portfolios, a priori. Nevertheless, if a manager does make the choice to rebalance

assets based upon this notion, this effect will be picked up in the ultimate portfolio

weight estimation results. As well, since different managers make different choices

regarding the length of their rebalancing intervals, this is further motivation to not

make a prior rebalancing assumption on the portfolio weight dynamics.

Next, a leptokurtic observational model is defined on the linear combination of
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the portfolio weights and the respective holding period returns on those assets:

rΦ,t ∼ t
(
w′

trA,t, σ
2
ǫ , ν
)

(2.2)

Since it may be impossible to fully capture the variation in portfolio returns by the set

of assets of interest, observational error is controlled via the variance-scaled version

of the Student-t distribution. It is reasonable that the set of chosen explanatory

assets may not span the investment space of the portfolio of interest. Therefore,

potential for error is introduced into the observed weighted portfolio return because

of missing explanatory assets. Due to the presence of excess kurtosis in financial

return data, as first documented in Mandelbrot (1963) and many others since then,

the Student-t model allows for flexibility outside of the standard Gaussian model.

Combining the weight transition model in (2.1) with the portfolio observation

model in (2.2) gives the foundational Dirichlet Portfolio Model (DPM) from Korsos

(2013b):

wt+1 ∼ Dir

(

α
wt ◦ (1 + rA,t)

∑N
i=1wt,i(1 + rA,t,i)

)

rΦ,t ∼ t
(
w′

trA,t, σ
2
ǫ , ν
)

Since neither the transition model nor the observation model is Gaussian, the

latent portfolio weights cannot be solved for in closed form via Kalman (1960).

Instead, the sequential Monte Carlo approach of Gordon, Salmond, and Smith (1993)

is used to numerically solve for the latent portfolio compositional weights. This

estimation algorithm, adapted to the DPM, is exhibited in Figure 2.2. Note that

with the lack of better “time period 0” prior portfolio weight information, we assume

E [w0,i] = 1/N, ∀i ∈ {1, . . . , N}, however if there is superior prior information

available, appropriate incorporation into this starting distribution will yield more

appropriate estimation results.
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DPM Estimation Algorithm

Initialize: Sample prior weights from

w
(p)
0 ∼ Dir

(

α0

(
1

N
, ...,

1

N

)′)

Iterate:

Step 1: Propagate new asset weights from

w
(p)
t ∼ Dir

(

α
w

(p)
t−1 ◦ (1 + rA,t−1)

∑N
i=1w

(p)
t−1,i(1 + rA,t−1,i)

)

for p = 1, ..., P

Step 2: Resample asset weights from

w
(p)
t ∼MultP

({

ω
(φ)
t , w

(φ)
t

}P

φ=1

)

where the importance weights are given by

ω
(p)
t ∝




1 +

1

ν

(

rΦ,t − w
(p)′
t rA,t

)2

σ2
ǫ






− ν+1

2

Figure 2.2: DPM Estimation Algorithm

2.4 Net Portfolio Leverage Estimation

There is growing evidence that many investment managers employ various amounts

of leverage to obtain their portfolio returns. Similar to the compositional portfolio

weights, this dynamic amount of net portfolio leverage is also unobserved. Herein, we

extend the structure of the DPM from Korsos (2013b) to include the joint estimation

of a time-varying net leverage value.

It is important to recognize the distinction between net leverage and gross leverage

values. Consider a fund manager who believes that within a particular industry, a
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certain stock is over-priced relative to another stock. Wanting to place a bet that

these two prices will converge, the fund does not want to be exposed to the common

industry risk present in both of these assets. By placing a long bet on the relatively

under-priced asset, and a corresponding short bet on the relatively over-priced asset

they can achieve this goal. Their total net exposure of this position may be quite

small due to the netting of the industry exposure, while the gross exposure can appear

very large since it is a total of both long and short positions. This gross exposure,

divided by contributed capital is the commonly quoted leverage multiplier value seen

in industry reports and the popular media. Instead, we focus on leverage arising from

non-netting exposures since this is the leverage which is ultimately meaningful in the

distribution of portfolio returns.

Let us define a time-varying net leverage value γt which specifies a multiplier on

the magnitude of portfolio’s net holdings over-and-above the portfolio’s contributed

capital. That is, if γ = 0.2 and a manager has $100 million in contributed capital,

the fund has net borrowings of $20 million in order to hold a total net value of $120

million of financial assets. This implies the following modified observational model:

rΦ,t ∼ t
(
(1 + γt)w

′
trA,t, σ

2
ǫ , ν
)

(2.3)

If γ = 0 for all time periods, this model is equivalent to the one in the original DPM.

Next, a Gaussian random walk model, adjusted for capital appreciation, is spec-

ified for the dynamics of this leverage parameter:

γt ∼ N

(
γt−1

1 + rΦ,t−1 (1 + γt−1)
, σ2

γ

)

(2.4)

Notice that as the a portfolio increases in value due to capital appreciation of the

component assets, the effective leverage of the portfolio decreases. Just as we want

to capture active trading decisions on the relative portfolio weights, we take a similar
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approach to the leverage values. That is, our prior at each period is that the manager

has done nothing to change their portfolio since the previous period, thereby allowing

the Bayes rule updates to reflect only the active trading decisions. Combining (2.3)

and (2.4) with the original DPM gives the Leveraged Dirichlet Portfolio Model (L-

DPM):

wt+1 ∼ Dir

(

α
wt ◦ (1 + rA,t)

∑N
i=1wt,i(1 + rA,t,i)

)

γt ∼ N

(
γt−1

1 + rΦ,t−1 (1 + γt−1)
, σ2

γ

)

rΦ,t ∼ t
(
(1 + γt)w

′
trA,t, σ

2
ǫ , ν
)

Again, the sequential Monte Carlo estimation approach is applied to develop the

estimation algorithm exhibited in Figure 2.3. We place a Beta distribution prior on

the “time period 0” leverage values in order to initialize leverage multipliers in a

historically reasonable range.

2.5 Parameter Learning

The main difficulty of these dynamic models is having to specify the values of the

tuning parameters before filtering to estimate the latent states. One approach is

to choose these tuning parameters via Bayes Factor optimization. This is done

by selecting the parameter set Mi with the largest associated marginal predictive

likelihood over the entire data sample:

p (rΦ,t|Mi) =
t∏

τ=1

p (rΦ,τ |Fτ−1,Mi)

Instead, we take the approach of simultaneously learning values for these parameters

during the sequential latent weight estimation process. To date, a few approaches
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L-DPM Estimation Algorithm

Initialize: Sample prior weights and leverage values from

w
(p)
0 ∼ Dir

(

α0

(
1

N
, ...,

1

N

)′)

γ
(p)
0 ∼ Beta (a, b)

Iterate:

Step 1: Propagate new asset weights and leverage values from

w
(p)
t ∼ Dir

(

α
w

(p)
t−1 ◦ (1 + rA,t−1)

∑N
i=1w

(p)
t−1,i(1 + rA,t−1,i)

)

for p = 1, ..., P

γ
(p)
t ∼ N




γ
(p)
t−1

1 + rΦ,t−1

(

1 + γ
(p)
t−1

) , σ2
γ



 for p = 1, ..., P

Step 2: Resample asset weights and leverage values from

{

w
(p)
t , γ

(p)
t

}

∼MultP

({

ω
(φ)
t , w

(φ)
t , γ

(p)
t

}P

φ=1

)

where the importance weights are given by

ω
(p)
t ∝




1 +

1

ν

(

rΦ,t −
(

1 + γ
(p)
t

)

w
(p)′
t rA,t

)2

σ2
ǫ






− ν+1

2

Figure 2.3: L-DPM Estimation Algorithm

have been proposed by Liu and West (2001), Storvik (2002), and Fearnhead (2002).

Due to the superior results of Lopes, Carvalho, Johannes, and Polson (2010), we use

their Particle Learning concept to learn the values of parameters α, σ2
ǫ , ν, and σ2

γ

in an online manner. In order to do so, prior sampling distributions and suitable

sufficient statistics need to be identified.
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2.5.1 Weight Transition Model

The transition model requires a parameter α which controls the dispersion of the

weights when forming the prior for the next time period. In order to sample this α

parameter, it is necessary to derive the conjugate prior of the Dirichlet distribution.

In the generalized form, the Dirichlet distribution is written:

p (x|α) =
1

B(α)

N∏

i=1

xαi−1
i , where B(α) =

∏N
i=1 Γ(αi)

Γ
(
∑N

i=1 αi

)

The Dirichlet distribution is an exponential family distribution, and therefore can

be written in the form:

p (x|η) = h (x) g (η) exp (η′T (x))

where the base measure, natural parameter, partition, and sufficient statistic values

are given, respectively:

h (x) = 1, η = α− 1, g (η) =
1

B (η + 1)
, T (x) = ln x

For any exponential family distribution, there exists a conjugate prior of the form:

p (η|χ, n) = f (χ, n) g (η)n exp (η′χ)

∝ g (η)n exp (η′χ)

where f (χ, n) is a normalization constant. Therefore, a conjugate prior to the Dirich-

let distribution is:

p (α|χ, n) ∝
1

B(α)n
exp

(
(α− 1)′ χ

)

Now, as in Grunwald, Raftery, and Guttorp (1993), let us reparametrize the con-

centration parameter into the decomposition α = αθ where α ∈ R+ specifies the
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dispersion and θ ∈ S
N−1 specifies the location. Therefore, we can write the condi-

tional for the dispersion parameter α as

p (α|χ, n,θ) ∝
1

B(αθ)n
exp

(
(αθ − 1)′ χ

)

and the conditional for the location parameter θ as

p (θ|χ, n, α) ∝
1

B(αθ)n
exp

(
(αθ − 1)′ χ

)
.

This conditional distribution for θ is similar to the Dirichlet Conjugate distribution

first given in Grunwald, Raftery, and Guttorp. We note that theirs is adapted to the

setup of filtering location values from noisy compositional observations. In contrast,

we are interested in the other part of the concentration parameter decomposition,

that is, estimating values of the dispersion parameter α. Therefore, we instead

concern ourselves with p (α|χ, n,θ).

In the DPM, we specify the location parameter θ to be:

θt = wt|t−1

= E [wt|Ft−1]

=
wt−1 ◦ (1 + rA,t−1)

∑N
i=1wt−1,i(1 + rA,t−1,i)

Therefore, we want to update the prior on α given new observations. Using the

derived conjugate prior distribution with the exponential distribution properties,

the posterior with a single new observation x is obtained:

p (α|x,χ, n,θ) = p (α|χ+T (x) , n+ 1)

∝
1

B(αθ)n+1
exp

(
(αθ − 1)′ (χ+T (x))

)

=
1

B(αθ)n+1
exp

(
(αθ − 1)′ (χ+ ln x)

)
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So, for a given set of initial model parameters, n0 and χ0, and a new portfolio

weight posterior wt|t ∈ S
N−1, updating the sample statistics at each iteration is done

recursively via:

nt = nt−1 + 1

χt = χt−1 + lnwt|t

where the posterior distribution for sampling α is given by:

p
(
α
∣
∣wt|t,χt, nt, wt|t−1

)
∝

1

B(αwt|t−1)nt
exp

((
αwt|t−1 − 1

)′
χt

)

This is not a common distribution, and so sampling from this can be done via Slice

Sampling (Neal, 2003).

2.5.2 Leverage Transition Model

Similarly, we can construct a particle learning setup for the leverage transition model

parameter σ2
γ. Let us first consider the Gaussian random walk model with prior

transitional variance given by s2γ. The conjugate prior on this parameter is the

inverse Gamma distribution:

IG
(
nt/2, nts

2
γ,t/2

)

For a given set of initial prior parameters, n0 and s
2
γ,0, updating the sample statistics

at each iteration is done recursively via:

nt = nt−1 + 1

nts
2
γ,t = nt−1s

2
γ,t−1 +

(

γt −
γt−1

1 + rΦ,t−1 (1 + γt−1)

)2
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2.5.3 Gaussian Observation Model

Finally, we can construct a particle learning setup for the observational model pa-

rameters. Before we consider our Student-t model, let us first examine a strictly

Gaussian observational model with variance given by σ2
ǫ . The conjugate prior on

this parameter is the inverse Gamma distribution:

IG
(
nt/2, nts

2
ǫ,t/2

)
(2.5)

Similar to the leverage results above, for a given set of initial prior parameters, n0

and s2ǫ,0, updating the sample statistics at each iteration is done recursively via:

nt = nt−1 + 1

nts
2
ǫ,t = nt−1s

2
ǫ,t−1 + (rHF,t − w′

trPA,t)
2

2.5.4 Student-t Observation Model

Let us consider our Student-t observational model with degrees-of-freedom parameter

ν and scale parameter σ2
ǫ . The method proposed in Lopes and Polson (2012) for

Particle Learning of location-scale Student-t distributions can be implemented here

to perform sequential learning of these parameters.

Using a scale mixture of normals representation, we write the Student-t errors

η ∼ tν (0, σ
2
ǫ ) as:

η = σǫ
√

λiǫ where (λi|ν) ∼ IG (ν/2, ν/2) and ǫ ∼ N (0, 1)

First, assume the following Jeffreys prior from Fonseca, Ferreira, and Migon

(2008) on ν:

p (ν) ∝
1

σ

(
ν

ν + 3

){

ψ′
(ν

2

)

− ψ′

(
ν + 1

2

)

−
2 (ν + 3)

ν (ν + 1)2

}1/2
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where ψ′ (a) = d {ψ (a)} /da and ψ (a) = d {log Γ (a)} /da are the trigamma and

digamma functions, respectively.

Now, using the scale mixture of normals representation from above, Bayes rule

yields the sampling distribution for ν:

p (ν|λ) ≡ p (ν|St1, St2) ∝ p (ν)

( (
ν
2

) ν
2

Γ
(
ν
2

)

)t

S
−(ν/2+1)
t1 exp {−νSt2/2}

Given the set of initial values S01 = 1, S02 = 0, updating the sample statistics at

each iteration is done via:

St1 = St−1,1λ and St2 = St−1,2 + 1/λ

Similar to the posterior sampling distribution for the dispersion parameter α, draws

from this distribution can be obtained via Slice Sampling.

Next, assuming the same prior in (2.5) on the scale parameter σ2
ǫ , the sampling

distribution for the scale parameter is:

σ2
ǫ ∼ IG (St3/2, St4/2)

Given the set of initial values S03 = n0 and S04 = n0s
2
ǫ,0, updating the sample

statistics at each iteration is done via:

St3 = St−1,3 + 1 and St4 = St−1,4 + η2t /λ

As well, the predictive resampling distribution and latent state conditional pos-

terior for propagation are:

ηt+1 ∼ tSt3+2

(

0,
St4

St3 + 2
λ

)

λ ∼ IG

(
ν + 1

2
,
ν + η2t /σ

2
ǫ

2

)
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Combining all of these Particle Learning concepts with the L-DPM yields the com-

plete algorithm for the Leveraged Dirichlet Portfolio Model with Parameter Learning

detailed in Figures 2.4 and 2.5.

2.6 Data and Estimation

In order to illustrate our methodology, we evaluate the time-varying asset class com-

position and leverage on an index of the broad hedge fund industry returns. Similar

to initial OLS based decomposition technique that Sharpe (1992) used on the static

decomposition of mutual funds, and Fung and Hsieh (1997) used on the static decom-

position of hedge funds, we update their results to allow for time-varying portfolio

weights in a more appropriately specified dynamic model rather than their rolling-

window OLS approach. As well, since leverage is an important component of hedge

fund portfolio returns, we have introduced a technique to perform joint estimation

of time-varying leverage multiplier values as part of the dynamic model. This gives

us the ability to capture a larger portion of the variation in hedge fund portfolio re-

turns than the previous normalized constrained rolling OLS approach which simply

estimated relative portfolio weights with no leveraging effect.

We examine the monthly return data for the Hedge Fund Research FundWeighted

Composite Index (HFRIFWC) from January 1995 to October 2012. This index is

formed from monthly self-reported returns complied from a source of over 2,200

hedge funds with over $50 million USD under management and a track record of

greater than 12 months. These return values are reported net of individual fund

managers’ fees. We note that there can be some biases present in these self-reported

aggregated hedge fund indices including illiquidity-induced serial correlation in fund

returns (Getmansky, Lo, and Makarov, 2004), backfill and incubation bias (Fung

and Hsieh, 2004), and self-selection bias (Fung and Hsieh, 2000, 2009). Nevertheless,
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L-DPM with Parameter Learning Estimation Algorithm - (Part 1 of 2)

Initialize:

Sample prior weights and leverage values from

w
(p)
0 ∼ Dir

(

α0

(
1

N
, ...,

1

N

)′)

and γ
(p)
0 ∼ Beta (a, b)

Choose initial values for particle learning parameters

nα,0, χt, nγ,0, s
2
γ,0, S01 = 1, S02 = 0, S03 = nǫ,0, S04 = nǫ,0s

2
ǫ,0

Iterate:

Step 1a: Sample mixture parameter:

λ(p) ∼ IG
(

ν(p)/2, ν(p)/2
)

Step 1b: Resample particles with predictive distribution importance weights given
by

ω
(p)
t ∝




1 +

1

St3 + 2

(

rΦ,t+1 −
(

1 + γ
(p)
t+1|t

)

w
(p)′
t+1|trA,t+1

)2

λ(p)S
(p)
t4 /

(

S
(p)
t3 + 2

)






−
St3+3

2

where the one-step-ahead weight and leverage predictions wt+1|t and γt+1|t are:

w
(p)
t+1|t =

w
(p)
t ◦ (1 + rA,t)

∑N
i=1w

(p)
t,i (1 + rA,t,i)

and γ
(p)
t+1|t =

γ
(p)
t

1 + rΦ,t

(

1 + γ
(p)
t

)

Step 2: Propagate asset weights and leverage values from

w
(p)
t+1 ∼ Dir

(

α
w

(p)
t ◦ (1 + rA,t)

∑N
i=1w

(p)
t,i (1 + rA,t,i)

)

and γ
(p)
t+1 ∼ N




γ
(p)
t

1 + rΦ,t

(

1 + γ
(p)
t

) , σ2
γ





Figure 2.4: L-DPM with Parameter Learning - (Part 1 of 2)

in the absence of better information, this data remains a reasonable and commonly

used proxy for the performance of the aggregate hedge fund industry portfolio.

64



www.manaraa.com

L-DPM with Parameter Learning Estimation Algorithm - (Part 2 of 2)

Step 3a: Sample Mixture Parameter

λ(p) ∼ IG





ν(p) + 1

2
,
ν(p) +

(

rΦ,t+1 −
(

1 + γ
(p)
t+1

)

w
(p)′
t+1rA,t+1

)2
/σ

(p)2
ǫ

2






Step 3b: Update sample statistics

nα,t+1 = nα,t + 1, nγ,t+1 = nγ,t + 1, St+1,3 = St,3 + 1,

nγ,t+1s
(p)2
γ,t+1 = nγ,ts

(p)2
γ,t +



γ
(p)
t+1 −

γ
(p)
t

1 + rΦ,t

(

1 + γ
(p)
t

)





2

,

χ
(p)
t+1 = χ

(p)
t + lnw

(p)
t+1, S

(p)
t+1,1 = S

(p)
t,1 λ

(p), S
(p)
t+1,2 = S

(p)
t,2 + 1/λ(p),

and S
(p)
t+1,4 = S

(p)
t,4 +

(

rΦ,t+1 −
(

1 + γ
(p)
t+1

)

w
(p)′
t+1rA,t+1

)2
/λ(p)

Step 4: Sample parameters

α(p) ∼ p
(

α(p)
)

∝
1

B(αw
(p)
t+1|t)

nα,t+1

exp

((

αw
(p)
t+1|t − 1

)′
χ
(p)
t+1

)

,

ν(p) ∼ p
(

ν(p)
)

∝ p (ν)

((
ν
2

) ν
2

Γ
(
ν
2

)

)t

S
(p)
t1

−(ν/2+1)
exp

{

−νS
(p)
t2 /2

}

,

σ(p)
γ

2
∼ IG

(

nγ,t+1/2, nγ,t+1s
(p)
γ,t+1

2
/2

)

,

and σ(p)
ǫ

2
∼ IG

(

St+1,3/2, S
(p)
t+1,4/2

)

Figure 2.5: L-DPM with Parameter Learning - (Part 2 of 2)

For the portfolio asset classes, we use an almost identical set to those used in

Fung and Hsieh (1997). We, however, break fixed income securities into municipal,

corporate high yield, and short-term treasuries, since they find that municipal and

high yield bond funds have low correlation with their set of asset classes. Consistent

with their findings, the inclusion of these asset classes in our estimation procedure
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Color Asset Class Name
Barclays Municipal Bond Index
Barclays Short Term Treasury Bond Index
Barclays Corporate High Yield Bond Index
Deutsche Bank US Dollar Long Futures Index
Dow Jones - UBS Commodity Index
MSCI Emerging Markets Index
MSCI EAFE Index (Europe, Australasia, Far East)
MSCI US Equity Index

Table 2.1: Asset Class Color Code

significantly increases the amount of variation in returns explainable in the index

for the aggregate hedge fund industry. Therefore, the returns on both municipal

bonds and corporate high yield bonds are an important component of the hedge

fund industry return profile. As with any estimation technique, we emphasize the

importance of appropriate explanatory variables, and in this case, an appropriate

set of portfolio assets due to the potential for omitted variable bias arising from

correlation across asset returns. Table 2.1 enumerates the asset class list and color

key. Note that it is not necessary to restrict ourselves to this specific set of asset

classes. The methodology described above can be applied to any asset set of interest.

Finally, it is important to acknowledge the widespread discussion of hedge funds

taking large short positions on various assets. Notably, the structure of this Dirichlet

Portfolio Model family does not allow for negative weight estimation since values are

restricted to the simplex. Although it may be easy for an individual hedge fund to

take conceivably large short positions on a particular asset, historical data suggests

that it is unlikely that the aggregate of all hedge funds holds net short positions on

any asset class. England’s Financial Conduct Authority, formerly the Financial Ser-

vices Authority, conducts periodic holdings surveys on a subset of hedge funds. These

quarterly reports confirm that although many funds bolster large short positions, the
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net exposures inside all these asset classes are almost always net-long. In the very

rare cases where exposures are net-short, they are almost indistinguishable from zero.

Therefore, the assumed net-long estimation structure is largely appropriate.

2.7 Hedge Fund Results

We now use the Leveraged Dirichlet Portfolio Model with Parameter Learning to

estimate portfolio weights, leverage multiplier values, and tuning parameter values

on the aggregate hedge fund return data. Then, using these portfolio weights and

leverage values, the model is used to forecast the one-step-ahead predicted weights

to create a time series of “forecasted” returns. These returns are plotted along with

the observed index returns to demonstrate the out-of-sample forecasted accuracy of

the estimation procedure.

Figure 2.6 shows the forecasted returns and estimated weight plots. The fore-

casted returns are very close to the actual observed returns in the next period. We

observe a cyclical pattern in the estimated weights which transitions from equities

in periods of economic growth to fixed income securities during recessions. As well,

a large weight is placed on short-term treasury securities beginning in 2001. As

previously identified in Korsos (2013b), artificially low volatility in the hedge fund

return data, due to the return smoothing and reporting biases, causes larger weight

to be estimated on low volatility assets, such as short-term treasuries. Consistent

with the results of Korsos, if the desmoothing model of Getmansky, Lo, and Makarov

is implemented to desmooth the reported returns, weight on treasuries dramatically

decreases while the other asset class weights scale up proportionately in order to

appropriately capture the larger hedge fund return volatility.

Figure 2.7 shows the estimated values for the leverage multiplier γt. Interestingly,

we see a rather constant, but slowly decreasing value of leverage, suggesting that
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Figure 2.6: Forecasted Returns & Estimated Weights

although many funds may employ large amounts of gross leverage to obtain their

distribution of returns, the net value of borrowing among this sample of the hedge

fund industry is small.

At first, these small leverage values seem strikingly low due to the media imposed

‘prior’ manifested from the reported high gross leverage values. For example, in an

April 2012 article in the Financial Times, Michael Hintze, chief executive of CQS, a

$9 billion London based hedge fund said, “hedge funds are presently leveraged one

to three times; if they’re mad, five times; if they’re insane, 10 times.” Recall that net

and gross leverage values can differ dramatically. For example, suppose the hedge

fund industry has around $200 billion in short exposures and $275 billion in long
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Figure 2.7: Estimated Leverage Multipliers

exposures to equities. Financing for much of the long positions can be offset via

proceeds from the short positions. To keep this example simple, assuming negligibly

small borrowing costs and margin requirements, $200 billion of the long positions

are financed with $200 billion of proceeds from the shorts. This leaves $75 billion

remaining to finance in long equity positions. If this entire amount is financed via

contributed capital, this yields a gross leverage multiple of (200+200+75)/75 = 6.33,

whereas net leverage is simply (−200 + 200 + 75)/75 = 1, that is non-existent.

Financing even $10 billion of these equity positions via borrowing facilities still yields

similar multiplier results of (200 + 200 + 75)/65 = 7.31 for gross leverage and only

(−200+200+75)/65 = 1.15 for net leverage. That is, with $10 billion of borrowing,

gross leverage appears as 631% above contributed capital, when net leverage truly is

only 15%.

The particle learning estimation for the tuning parameters is illustrated similarly.

Figures 2.8, 2.9, 2.10, 2.11 show the progression of sequentially updating credible

regions for each of the tuning parameters α, σγ, σǫ, and ν.

Table 2.2 exhibits summary statistics for the monthly returns of the index and
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Figure 2.8: Estimated α Value
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Figure 2.9: Estimated σγ Value

the returns implied by the weights and leverage of the Leveraged Dirichlet Portfolio

Model with Parameter Learning (LDPM-PL) estimation. The ‘Same-Period’ return

values are constructed with the sequential posterior estimates, thereby indicating

explanatory power of the model given the compositional assets. The LDPM-PL’s

dynamic weight and leverage processes capture over 85% of the in sample variation

in hedge fund returns. Notice that these sequential estimates do not include future

period data, therefore not even using the entire sample period of data at each time

70



www.manaraa.com

1997 2000 2002 2005 2007 2010 2012
0.005

0.01

0.015

Time

σ
LDPM−L σ over Time (HFRIFWC)

 

 
95% CI Filter Mean

Figure 2.10: Estimated σǫ Value
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Figure 2.11: Estimated ν Value

period, as is done in many historical OLS based approaches. If the entire sample

period data was to be used to refine the estimates at all periods, the fixed-interval

particle smoothing technique of Carvalho, Johannes, Lopes, and Polson (2010) can

be implemented here. However, note that since this algorithm costs O (P 2T ) in com-

putation time, where P is the number of particles used and T is the number of time

periods, this can be prohibitively costly for commonly large values of P . The ‘Fore-

casted’ return values are constructed with the sequential prior estimates, thereby
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exhibiting the predictive power of the model at over 77% of future hedge fund re-

turn variation. Lastly, we point out that although the mean values of the estimated

returns are noticeably below those of the original index, this effect arises from the

aforementioned biases and return smoothing in the self-reported data. Applying a

desmoothing model to the original return data, shifts the weights into higher volatil-

ity and higher returning assets, thereby decreasing, but not completely eliminating

this gap. The remaining difference can be interpreted as the effect of reporting bi-

ases in the data. This is consistent with Malkiel and Saha (2005) and Jurek and

Stafford (2012) who report the annualized effects of these biases from as low as 3%

to potentially over 7% for various sources of hedge fund data. For comparison to our

results, that would imply a monthly upward bias of between 0.25% to 0.583% in the

mean return.

LDPM-PL

HFRIFWC Same-Period Forecasted

Mean 0.00748 0.00490 0.00427
Standard Deviation 0.02100 0.01992 0.02057
RMSE 0 0.00837 0.01060
Mean Abs Error 0 0.00576 0.00750
Correlation 1 0.92424 0.87996
R2 1 0.85423 0.77434

Table 2.2: Estimation Summary Statistics (Monthly Returns)

2.8 Net Portfolio Leverage by Fund Strategy

Since hedge funds and their respective managers can be very heterogeneous in their

expertise and trading styles, they are commonly classified by the broad type of

strategy they employ. These classifications regularly include Long/Short Equity,

Quantitative, Event Driven, Macro, and Relative Value strategies. To gain insight
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into the behavior of different types of hedge funds, we examine how net portfolio

leverage differs across the various types of these broad strategies.

In addition to the previously detailed ‘Composite’ index, we use corresponding

return indices from Hedge Fund Research for each of the following hedge fund clas-

sifications: Equity Long/Short, Quantitative, Event Driven, Macro, and Relative

Value. Similar to the composite index, these indices are formed from the same sam-

ple of 2,200 hedge funds with over $50 million USD under management. The Equity

Long/Short index consists of funds maintaining both long and short positions pri-

marily in equity and equity derivative securities. The Quantitative index consists of

funds which use various forms of quantitative decision processes to select securities

for purchase or sale. The Event Driven index consists of funds which hold securi-

ties of firms currently or prospectively involved in corporate transactions including

mergers, restructurings, financial distress, tender offers, shareholder buybacks, debt

exchanges, security issuance or other capital structure adjustments. The Macro in-

dex includes funds whose trading decisions are primarily influenced by movements

in economic variables and their resulting effects on related securities. Finally, the

Relative Value index consists of funds who attempt to profit off discrepancies in the

relationship between multiple securities.

Running the L-DPM on each of these hedge fund return indices gives the following

net portfolio leverage results in Figure 2.12. From this plot, while most funds tend to

have very similar net portfolio leverage values to the composite, two styles stand out.

The Relative Value funds exhibit a significant increase in leverage starting in 2000

and growing to almost double contributed capital in 2006. In 2007-2008 these funds

experienced a sharp decline in leverage, but still remain higher than any of the other

strategies. Since the majority of relative value strategies are concentrated in fixed

income securities, it is very easy for hedge funds to obtain ‘synthetic’ leverage on
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Figure 2.12: Leverage Comparison by Hedge Fund Strategy

these assets through the use of futures securities which have the effect of magnifying

exposures to underlying assets without the need to borrow capital in the conven-

tional ways. That is, the use of these fixed income futures securities allow funds to

obtain greater notional exposure than their contributed capital without the need for

repurchase agreements, prime brokerage borrowing facilities, unsecured borrowing,

or traditional term financing, like the issuance of public debt. Consistent with this,

the compositional weights are almost completely proportioned toward fixed income

assets.

The other notable standout is the Quantitative style. These funds appear very

similar to the composite until 2008, when their net portfolio leverage drops by about

20% and remains at that level. The estimated compositional portfolio weights also

suggest net exposures of 70-80% in equities until 2008, when equities drop to about
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60%, being replaced primarily by short-term treasuries. This deleveraging, combined

with a significant increase in risk-free securities, suggests that quantitative hedge

funds became more risk averse during the 2008 financial crisis, and that this cautious

risk aversion still persists.

Finally, the remaining three fund classifications are very similar to the overall

composite with regard to net portfolio leverage. The Equity Long/Short funds’ com-

positional weights are proportionately similar to the composite, with a 20% absolute

decrease in short-term treasuries. The Macro funds exhibit large investment swings

between fixed income, equity, and currencies. The majority of these exposures are to

the various fixed income securities except for high yield corporate bonds, since their

shorter maturities cause lower sensitivity to macroeconomic information in exchange

for increased sensitivity to firm-specific information. As expected, the Event Driven

funds have a significantly larger weight placed on high yield corporate bonds, due to

their sensitivity to corporate transactions and capital structure adjustments.

2.9 Estimation of Investment Effects

As previously detailed, due to the hidden nature of hedge fund investments, we may

never observe true portfolio holdings. Small glimpses of long positions in equities

and call/put options are available for some of the larger funds via 13D, 13G, and

13F SEC filings. Nevertheless, this is only a very small proportion of an individ-

ual fund’s holdings, let alone those for the aggregate industry portfolio. Investment

in fixed income, currencies, commodities, and even short positions do not have to

be disclosed. Therefore, although it would be ideal to measure the accuracy of the

portfolio estimation against the true portfolio compositions, this is not feasible. In-

stead, since changes in investment allocation through trading affects the demand for

those securities, contemporaneous price effects can be observed due to the expected

75



www.manaraa.com

market microstructure impact on those asset prices (O’Hara, 1995; Madhavan, 2000;

Hasbrouck, 2007). That is, if investment allocation is increased to a specific class

of security, a positive expected price effect, over the same time period, would be

consistent with this increase in asset demand.

In order to estimate the effect of changes in investment allocation on contempora-

neous returns, we identify that portfolio weight changes arise from two causes: capital

appreciation/depreciation of the compositional assets over a holding period and time

varying asset allocation. Since the proportion of portfolio weight changes caused by

capital appreciation/depreciation is not an investment decision controllable by a

portfolio manager, we concern ourselves only with portfolio weight changes caused

by active asset allocation trading decisions. In terms of our notation, the portfolio

weight change over time t caused by these trading decisions is given by wt|t −wt|t−1,

where wt|t ≡ wt is the estimated portfolio weight at t and wt|t−1 is the portfolio

weight at t given a strict buy-and-hold transition from the previous period’s esti-

mated weight wt−1|t−1. Therefore, this difference is the change in investment over

period t due to an active decision to adjust portfolio allocation. In terms of the

dynamic model, this difference is also thought of as the innovations on the weight

transition process.

In the context of our portfolio estimation with leverage multiplier, this portfolio

weight change is similarly given by
(
1 + γt|t

)
wt|t −

(
1 + γt|t−1

)
wt|t−1. We can now

estimate the contemporaneous effect of asset allocation decisions on component asset

i via:

rt,i = β0,i + β1,i
((
1 + γt|t

)
wt,i|t −

(
1 + γt|t−1

)
wt,i|t−1

)
+ ξt,i

where

wt,i|t−1 =
wt−1,i(1 + rA,t−1,i)

∑N
i=1wt−1,i(1 + rA,t−1,i)

and γt|t−1 =
γt−1

1 + rΦ,t−1 (1 + γt−1)
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Table 2.3 exhibits OLS estimation details on each of the asset classes using the

results from the L-DPM with Parameter Learning. We focus attention on the β1

coefficients, which indicate the effects of active trading changes in the hedge fund

industry portfolio on the same-period return in each asset class. Specifically, since

actively increasing holdings in an asset class increases same-period demand for those

assets, we would therefore expect a positive effect on prices and returns. We find

that all of the estimated coefficients are positive, except short-term treasuries, with

EAFE Equity, EM Equity, US Dollar Futures, and Municipal Bonds, significant at

the 1% level, and Commodities significant at the 10% level. As well, we point out

that although the coefficient on High Yield corporate bonds is not largely significant,

these assets are commonly subject to illiquidity-induced return smoothing by fund

managers (Fisher et al., 2003; Kadlec and Patterson, 1999). We note that if the

desmoothing model proposed in Getmansky, Lo, and Makarov is applied to the orig-

inal hedge fund data and our model is re-estimated, this coefficient on High Yield

corporate bonds becomes significant at the 1% level with no major changes to those

for the other assets.

2.10 Conclusion

This paper has extended a set of dynamic models and associated estimation pro-

cedures, based upon the foundational Dirichlet Portfolio Model (DPM) of Korsos

(2013b). The Leveraged Dirichlet Portfolio Model (LDPM) and the Leveraged

Dirichlet Portfolio Model with Parameter Learning (LDPM-PL) are valuable for

estimation of both the unobserved time-varying portfolio compositions and also the

net portfolio leverage of an aggregate portfolio return series. These techniques allow

for a convenient decomposition of the major portfolio components in a different ap-

proach than the conventional rolling-window OLS approach on a set of risk factors.
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Same-Period Return Effects of Active Trading

US Equity EAFE Equity EM Equity Commodities

β0 0.00750∗∗ 0.00494 0.00812∗ 0.00308
(0.00314) (0.00332) (0.00469) (0.00321)

β1 0.18587 0.92149∗∗∗ 1.45177∗∗∗ 0.65422∗

(0.19940) (0.27040) (0.36585) (0.36460)

R2 0.00410 0.05217 0.06945 0.01503

***p < 0.01, **p < 0.05, *p < 0.1

Same-Period Return Effects of Active Trading

US Dollar High Yield Treasuries Municipal

β0 0.00206 0.00695∗∗∗ 0.00276∗∗∗ 0.00521∗∗∗

(0.00161) (0.00187) (0.00014) (0.00079)
β1 0.69524∗∗∗ 0.06179 −0.00035 0.36078∗∗∗

(0.14743) (0.11827) (0.00852) (0.07834)

R2 0.09535 0.00129 0.00001 0.09133

***p < 0.01, **p < 0.05, *p < 0.1

Table 2.3: Same-Period Return Effects of Active Trading

Importantly, these approaches not only allow for the identification of the sources of

portfolio risk, but also time-varying estimates of the portfolio’s investable holdings

as they evolve through active trading decisions.

We then motivated this technique with the estimation of asset class weights on

an index proxying the aggregate return of the hedge fund industry. We found that

our dynamic weight and leverage processes captured over 85% of the variation in the

hedge fund return index. As well, a discernible cyclical pattern is observed in the

estimated weights which transitions from equities in periods of economic growth to

fixed income securities during recessions. Comparing results across different classi-

fications of hedge funds, we found that relative value hedge funds tend to have the

highest net portfolio leverage levels due to the ease of obtaining magnified exposures
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using fixed income futures. Finally, we exhibited the accuracy of this technique by

estimating asset class level regressions on the asset class return values against the

same-period changes in the portfolio investment weights. The strong significance

results are consistent with the expected market microstructure effects on prices for

those assets, thereby bolstering the effectiveness of these portfolio decomposition

techniques.

Finally, we note that this Dirichlet Portfolio Model family can be used in any

environment where underlying compositions of portfolios may not be observed over

time, but potentially noisy total portfolio returns are available. For example, consider

the mutual fund industry. Exact portfolio holdings are available quarterly, however

most changes in these holdings are unobservable until the next reporting period.

Since daily return data on the portfolio is available, the DPM family can provide

intra-reporting-period portfolio weight estimation for not only detection of when

funds are changing their portfolio compositions, but also identification of where they

are moving their assets.
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3

Decomposing Hedge Fund Portfolios:

Asset Allocation Choice & Its Role as a Volatility

Buffer

3.1 Abstract

Unlike for mutual funds, detailed reports of hedge fund portfolio holdings are never

accurately available via SEC filings except for long positions in equities and equity

options for funds with over $100 million net in those assets. Since the complete

picture of hedge fund holdings is not observable, this presents a significant analytical

hurdle for more detailed analysis. To overcome this, we use a compositional state

space model to estimate the dynamics of both asset class level portfolio holdings and

leverage values on an index of hedge fund industry returns from 1995 to 2012. With

estimates of these portfolio holdings, we find that net leverage levels in the hedge

fund industry are smaller than popular belief due to netting both internally and

across different funds. As well, using these estimates, we confirm previous findings

that hedge funds do not contribute to herding behavior in most asset classes, and in
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fact exhibit negative-feedback trading behavior in oil and municipal bonds.

3.2 Introduction

Although more transparent than they once were, hedge funds are a veritable “black

box” of investing since outsiders, as well as current invested clients, may never observe

the the entire true composition of a fund’s portfolio. On the other hand, mutual funds

present a much less opaque investment vehicle, where exact portfolio holdings can be

accurately measured each quarter via SEC filings. This allows for straight-forward

analysis to be performed using the compositions of these mutual fund portfolios.

Unfortunately, since these compositions are not available for hedge fund portfolios,

this manifests a significant analytical hole, and therefore it remains an econometric

challenge to infer economic effects from the features of these changing portfolios.

Nevertheless, the hedge fund industry does provide a very narrow glimpse into

their portfolio holdings via quarterly 13F SEC filings. These reports, required of

investment managers with at least $100 million in equity assets under management,

detail long positions in US equities, American Depository Receipts (ADRs), convert-

ible notes, and call and put options. As well, 13D or 13G filings are required of

any entity who obtains beneficial ownership of at least 5% of any class of publicly

traded securities in a publicly company. We point out that these filings do not re-

quire reporting of any short positions in equities, or even any detail on fixed income,

commodities, currencies, etc. Furthermore, since 13Fs are only required of funds

with at least $100 million in equity assets under management, large hedge funds

dealing primarily in the aforementioned, non-equity asset classes may not even have

to report their share of equity holdings. Lastly, since there is mounting evidence that

hedge funds employ large amounts of leverage to achieve their distribution of returns,

funds can have equity holdings which are multiples greater than $100 million, while
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having less than $100 million in equity assets under management, thereby avoiding

the requirement to report holdings. Hence, these filings only provide a very small

glimpse into the overall portfolio composition of hedge funds, thereby necessitating

an alternative method to determine time-varying portfolio compositions.

The idea of decomposing investment fund compositions originated with Sharpe

(1992), where he uses constrained OLS estimation to obtain asset class level portfo-

lio weights on individual mutual funds. He estimates both time-invariant weights on

the entire sample period, as well as demonstrates rolling window OLS regressions to

obtain time varying values. Fung and Hsieh (1997) extend this “style analysis” of

Sharpe to a different set of asset classes for both mutual funds and hedge funds. In

doing so, they observe that static asset class weights on hedge fund portfolios have

much lower in-sample explanatory power as compared to those for mutual funds.

This indicates dynamic asset allocation/trading strategies play a larger role in hedge

fund than mutual fund portfolios. In order to attribute the unexplained variation

of these hedge fund portfolios, Fung and Hsieh (2001) construct a set of Primitive

Trends Following Strategies (PTFS) which are used to explain common variation in

returns in the cross-section of hedge funds. These PTFS risk factors are constructed

to account for the dynamic nature of hedge fund weights over time due to the restric-

tive estimation procedure assuming static weight coefficients. To overcome the static

weight hurdle, and to demonstrate the benefits of dynamic models on factor loading

estimation, Mamaysky, Spiegel, and Zhang (2007) introduce a Kalman Filter based

approach to obtain time varying risk factor coefficients on mutual funds. Our ap-

proach recognizes these benefits and extends this idea to directly estimate the time

varying nature of portfolio weights in the spirit of Sharpe’s rolling window OLS.

However, we use advances in sequential Monte Carlo methods for dynamic model

estimation, thereby also releasing us from the restrictions of the Kalman Filter, and
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allowing for a more appropriately specified model.

As Fung and Hsieh (1997) identify, hedge fund trading strategies are much more

dynamic than those of mutual funds. Therefore, static buy-and-hold models largely

cannot explain the variation in returns. Instead, this suggests the use of a model

allowing for time-varying weight dynamics. Doing so enables us to capture the vari-

ation in hedge fund returns attributable to time-varying asset allocation, in addition

to the variation in underlying asset returns. We implement the Leveraged Dirich-

let Portfolio Model (L-DPM) from Korsos (2013a) to model both the normalized

portfolio weights, as well as a time varying leverage scaling parameter. Due to the

sequential nature of the estimation procedure, this allows us to not only explain the

in-sample variation in hedge fund returns, but also create out-of-sample forecasts at

each period of hedge fund asset class holdings in order to evaluate the forecasted

tracking ability of the dynamic weight process.

First, we apply this estimation procedure to a set of actively managed diversified

equity (AMDE) mutual funds, constructed similar to that in Kacperczyk, Sialm, and

Zheng (2005), in order to obtain a “style analysis” across a set of equity industries.

This is done by forming a value weighted return series on the set of AMDE mutual

funds, and industry portfolio returns on each respective industry of interest. Then,

time-varying industry style weights are estimated. Unlike previous work, we then

compare these estimated style weights to the true time-varying industry weights

implied by the set of AMDE mutual funds’ holdings to evaluate the accuracy of the

style analysis. We find that the dynamic model’s allowance for time variation in

industry weights produces explanatory power of 98.8% for these mutual funds on a

set of 5 value-weighted industry portfolios.

Motivated by these results, asset class weights are estimated on the Hedge Fund

Research (HFRI) Fund Weighted Composite Index, representing a proxy on the
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returns on the hedge fund industry. As expected, we find a discernible cyclical

pattern in the estimated asset class weights with transitions from equities in periods

of economic expansion, to fixed income securities during economic contraction. On

the other hand, we find a lack of statistical support for large net leverage in the hedge

fund industry, suggesting that although some funds may employ large amounts of

gross leverage to achieve their distribution of returns, the net amount of leverage

aggregated internally and across all funds is smaller than popular belief. However,

this is consistent with various hedge fund surveys from England’s Financial Conduct

Authority and the European Central Bank.

Finally, we use these estimated asset class weights to assess whether hedge fund

trading exhibits herding behavior in individual asset classes. That is, we pose the

question: Do funds contribute to increased asset price volatility via selling as prices

decrease or buying as prices increase? Since our estimation technique produces esti-

mates of portfolio holdings, these can be used to form changes in portfolio weights

for analysis of asset class level trading behavior. Consistent with previous findings

by Kodres and Pritsker (1996) for futures transactions, we find that funds do not

exhibit herding-like behavior across most asset classes. In fact, evidence of the oppo-

site of herding, or negative-feedback trading, is found in oil and municipal bonds. By

acting as a ready counterparty in directional markets, hedge funds increase liquidity

and thereby contribute to decreased volatility in these assets (Morris and Shin, 1999;

Persaud, 2000; Shiller, 1990).

The remainder of this paper is structured as follows: Section 2 describes the

dynamic portfolio model and estimation procedure used for determining time-varying

portfolio weights and leverage values. Section 3 outlines the mutual fund and hedge

fund data used for estimation. Section 4 exhibits the resulting accuracy of the

portfolio weight estimation on the mutual fund data. Section 5 presents the asset
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class portfolio weight estimation results for the hedge fund data. Section 6 analyzes

these results as they relate to the various hedge fund surveys. Section 7 estimates

the magnitude of herding behavior by hedge funds using the estimated portfolio

compositions. Finally, section 8 concludes.

3.3 Dynamic Portfolio Model and Estimation

Consider the portfolio weight estimation problem where both the portfolio returns

and compositional asset returns are observable, however the relative investment

weights on those assets are never completely observable to those outside the firm. As

in Korsos (2013a, 2013b), let there be an known investable set of N assets or asset

classes with time-varying latent compositional weights wt,i for each asset i at time

t which are required satisfy a normalizing budgetary restriction
∑N

i=1wt,i = 1. As

Sharpe (1992) initially proposed, this restriction may be imposed directly on the least

squares optimization. However, since OLS regression techniques directly assume a

static model on the estimated weight coefficients, even rolling-window approaches

to estimate time-varying values suffer from model misspecification. Since the entire

aim of the estimation exercise is to infer how the weights are changing over time, we

assume a dynamic model to be true a priori, therefore leading to a violation of the

Gauss-Markov theorem. Hence, inference from these static OLS approaches implies

an a priori bias and inefficiency in the resulting estimates. This is strong motivation

for a more suitably specified dynamic model for estimation.

Mamaysky, Spiegel, and Zhang (2007) identify the estimation benefits of speci-

fying a dynamic model and appropriate filtering methodology for time-varying risk

factor identification. Since portfolio risk factor exposures can take on values in the re-

als RN , a classic Normal-Normal dynamic linear model, solvable via Kalman (1960) is

an easily justifiable approach. In order to model relative portfolio weights which take
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values on the simplex S
N−1 =

{
w ∈ R

N
+ : w′1 = 1

}
, we need to constrain the estima-

tion space. Korsos (2013b) details various ways that this constraint can be applied

to dynamic models. First, this can be imposed directly on the period-by-period pos-

terior weight optimization problem in a simple multivariate normal transition model.

Second, since the restriction on the simplex implies N − 1 degrees of freedom, where

N is the number of component assets, the following restriction can be placed on the

transitional covariance matrix:
∑N

i=1Cov (wt,j, wt,i) = 0, ∀j ∈ {1, . . . , N}. Korsos

(2013b) shows that although these techniques seem convenient, they still require

specification of O (N2) covariance parameters, which for large numbers of explana-

tory compositional assets can be a challenging task. Instead, directly choosing a

distribution with support on the simplex provides a natural way to model these pro-

portions without needing to impose additional restrictions. As well, the choice of a

Dirichlet distribution only requires the specification of a single univariate dispersion

parameter, controlling the prior period-to-period variability in the portfolio weight

transitions.

Since many fund managers commonly employ the use of leverage in their trading

strategies, we also wish to jointly identify this effect on portfolio returns. Similar

to the relative portfolio weights, the dynamics of this net leverage amount is also

unobservable. We capture this net leverage by defining a time-varying value γt which

specifies a multiplier on the magnitude of portfolio’s net holdings over-and-above the

portfolio’s contributed capital. That is, if γ = 0.2 and a manager has $100 million

in contributed capital, the fund has net borrowings of $20 million in order to hold a

total net value of $120 million of financial assets. Hence, γ = 0 indicates no leverage.

For convenience, let Ft represent the filtering of all information known at time

t. This includes all previous portfolio returns rΦ, compositional asset returns rA,

compositional asset weights w, and leverage scaling values γ up to and including
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time t. That is,

Ft = {rΦ,1, . . . , rΦ,t, rA,1, . . . , rA,t, w1, . . . , wt, γ1, . . . , γt} .

Define wt = (wt,1, wt,2, ..., wt,N )
′ to be an N × 1 vector of the weights on each asset

at the beginning of time period t, γt to be a scalar leverage multiplier also at the

beginning of time period t, rA,t = (rA,t,1, rA,t,2, .., rA,t,N )
′ to be an N × 1 vector of

the compositional asset returns over time period t, and rΦ,t to be a scalar value of

the return on the portfolio over the same time period t. The chronology of the time

period notation is illustrated below:

rA,t−1, rΦ,t−1 rA,t, rΦ,t rA,t+1, rΦ,t+1

t− 1 t t+ 1
wt−1, γt−1 wt, γt wt+1, γt+1 wt+2, γt+2

Figure 3.1: Timeline Notation Illustration

Following the Leveraged Dirichlet Portfolio Model (L-DPM) setup motivated in

Korsos (2013a), we specify the following compositional weight transition model, lever-

age multiplier transition model, and observation model, respectively:

wt+1 ∼ Dir

(

α
wt ◦ (1 + rA,t)

∑N
i=1wt,i(1 + rA,t,i)

)

(3.1)

γt+1 ∼ N

(
γt

1 + rΦ,t (1 + γt−1)
, σ2

γ

)

(3.2)

rΦ,t ∼ t
(
(1 + γt)w

′
trA,t, σ

2
ǫ , ν
)

(3.3)

First, the compositional weight transition model in (3.1) is a Dirichlet random

walk model adjusted for capital appreciation of the invested assets. Plainly, this is

a random walk model restricted to the simplex by decreasing directional variance as
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a respective boundary is approached. We note that since α is a scalar parameter

controlling the prior dispersion of the period-to-period weight transitions, the one-

step-ahead expectation is the unadjusted portfolio holdings given initial portfolio

weights wt and realized holding period asset returns rA,t:

E [wt+1|Ft] =
wt ◦ (1 + rA,t)

∑N
i=1wt,i(1 + rA,t,i)

This provides the desired capital appreciation adjusted random walk property, while

the scalar parameter α ∈ (0,∞) can be thought of as the speed at which managers

adjust their portfolio holdings. That is, smaller values of α represent faster changes

in portfolio weights.

Although it is common for many asset managers to rebalance their portfolio

holdings at predetermined periods such that E [wt+1|Ft] = wt, this is part of the

investment process choice. Therefore it is not assumed for the broad range of port-

folios at every observable period. Nevertheless, if a manager does make the choice

to rebalance asset weights, this effect will be picked up in the portfolio weight es-

timation results. As well, since different managers make different choices regarding

their rebalancing intervals, this is further motivation to not make a prior rebalancing

assumption. Ultimately, we are interested in estimating the active changes in port-

folio weights due to trading activity, and since rebalancing a portfolio’s investment

weights involves active trading, these are exactly the effects we are trying to identify.

Second, the leverage multiplier transition model in (3.2) is a Gaussian random

walk model, also adjusted for capital appreciation. As a portfolio increases in value

due to capital appreciation of the component assets, the effective leverage of the port-

folio decreases, and vice versa. Just as we want to capture active trading decisions

on the relative portfolio weights, we take a similar approach to the leverage values.

That is, our prior at each period is that the manager has done nothing to change
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their portfolio since the previous period, thereby allowing the Bayes rule filtering

updates to reflect only the active trading decisions.

Lastly, the portfolio observation model in (3.3) is a location-scale Student-t model

centered on the linear combination of the portfolio weights and the respective holding

period returns for those assets, scaled by the leverage multiplier. It is reasonable that

the set of chosen explanatory assets may not fully capture the variation in portfolio

returns since they may not span the investment space of the portfolio of interest.

Therefore, potential for leptokurtic error is introduced into the observed weighted

portfolio return because of missing explanatory assets (Mandlebrot, 1963).

Estimation of the latent portfolio weights and leverage values is preformed via

a sequential Monte Carlo technique. Even though the leverage transition model is

Gaussian, the weight transition model and the observation model are not, therefore

both the latent portfolio weights and leverage values cannot be solved for in closed

form via Kalman (1960). Instead, the sequential Monte Carlo approach of Gordon,

Salmond, and Smith (1993) is used to numerically solve for the latent portfolio

compositional weights and leverage values. This Sampling Importance Resampling

(SIR) estimation algorithm, adapted to the L-DPM, is exhibited in Figure 3.2.

3.4 Data

3.4.1 Mutual Fund Data

In order to compel the hedge fund asset class weight estimation results, we identify

a similar portfolio tracking environment where true portfolio weights are available at

discrete points in time. Mutual fund investments provide quarterly asset allocation

data via the various required SEC forms 13F, 13D, 13G, N-1A, N-30D, N-CSR,

and N-Q. Therefore, by first assuming that the mutual fund portfolio weights are

completely unobservable, we construct weight estimates similarly to our hedge fund
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L-DPM Estimation Algorithm

Initialize: Sample prior weights and leverage values from

w
(p)
0 ∼ Dir

(

α0

(
1

N
, ...,

1

N

)′)

and γ
(p)
0 ∼ Beta (a, b)

Iterate:

Step 1: Propagate new asset weights and leverage values from

w
(p)
t ∼ Dir

(

α
w

(p)
t−1 ◦ (1 + rA,t−1)

∑N
i=1w

(p)
t−1,i(1 + rA,t−1,i)

)

for p = 1, ..., P

γ
(p)
t ∼ N

(

γ
(p)
t−1

1 + rΦ,t−1 (1 + γt−1)
, σ2

γ

)

for p = 1, ..., P

Step 2: Resample asset weights and leverage values from

{

w
(p)
t , γ

(p)
t

}

∼MultP

({

ω
(φ)
t , w

(φ)
t , γ

(p)
t

}P

φ=1

)

where the importance weights are given by

ω
(p)
t ∝




1 +

1

ν

(

rΦ,t −
(

1 + γ
(p)
t

)

w
(p)′
t rA,t

)2

σ2
ǫ






− ν+1

2

Figure 3.2: L-DPM Estimation Algorithm

estimation. Then, these estimates can be directly compared to the true weight values

in order to motivate estimation accuracy.

We proceed by constructing an aggregated dataset of the actively managed diver-

sified equity (AMDE) mutual funds. For this exercise, we focus attention on port-

folios consisting of almost all equity securities since exact snapshots of these equity

holdings are readily and accurately available. As similarly performed in Kacper-

czyk, Sialm, and Zheng (2005), we merge the CRSP Survivorship Bias Free Mutual
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Fund Database with the Thomson-Reuters Mutual Fund Holdings Database, for-

merly known as the CDA Investment Technologies/Spectrum holding database, and

the CRSP individual stock level data. The CRSP Mutual Fund Database includes

information on various fund characteristics including total net assets, fund returns,

and investment objectives/classifications. Recently, it has been updated to include

stock level holdings, however the Thomson-Reuters Mutual Fund Holdings Database

includes a much longer history of these holdings, and therefore provides a more exten-

sive time series of data for analysis. We follow Wermers (2000) and use the Wharton

Research Database Services (WRDS) Mutual Funds Links (MFLinks) Database to

appropriately join the the CRSP and Thomson-Reuters mutual fund databases. Our

set of actively managed diversified equity funds is then constructed by excluding bal-

anced, bond, index, international, and sector funds. As well, we exclude all mutual

fund observations where total net assets were less than $1 million in that quarter.

Our final sample spans the period from December 1987 to June 2010.

Using the resulting mutual fund dataset, we construct an aggregate return in-

dex on the net asset value weighted set of actively managed diversified equity mu-

tual funds from the fund returns and net asset values in the CRSP Mutual Fund

Database. Then, with the merged holdings data for this set of mutual funds, we

can obtain true relative portfolio weights on any mutually exclusive division of the

underlying compositional assets. Since the estimation space on individual stocks

can be on the order of 104 dimensional, we reduce the dimension of equities into

industry groupings. For a straightforward exhibition of our methodology, we adopt

the Ken French 5 industry groupings detailed in Table 3.1. The ‘Consumer’ group

includes consumer durables, non-durables, wholesale, retail, and some services (laun-

dries, repair shops). The ‘Manufacturing’ group includes manufacturing, energy, and

utilities. The ‘High Technology’ group includes business equipment, telephone, and
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television transmission. The ‘Health’ group includes healthcare, medical equipment,

and drugs. Finally, the ‘Other’ group includes mines, construction, building man-

agement, transportation, hotels, business services, entertainment, and finance.

The true industry weights for the set of mutual funds is constructed by match-

ing individual stock SIC codes with the associated industry grouping. Then, total

capital invested in each industry is summed over all mutual funds and normalized

over total capital in all industries to obtain relative portfolio weight values for each

time period. This establishes our true industry relative portfolio weights for the

AMDE mutual fund set. Consistent with this, the Ken French 5 industry portfolio

returns are used for the explanatory compositional asset returns. These returns are

constructed by the value weighted average return on the complete set of firms in the

given industry, rebalanced yearly at the end of June. That is, it represents the re-

turn on holding the portfolio of all firms in an industry in proportion to their market

capitalization. If the mutual funds hold the set of firms in a different proportion,

or if the funds perform large amounts of active trading between reporting periods,

these industry portfolio returns may become less suitable. Nevertheless, although

these value-weighted industry returns may not constitute the exact composition of

the mutual funds’ investment choices and resulting returns on each industry, they do

represent a decent proxy as the size of the chosen mutual fund set grows large.

3.4.2 Hedge Fund Data

In the hedge fund portfolio estimation problem, we consider the monthly return data

for the Hedge Fund Research Fund Weighted Composite Index (HFRIFWC) from

January 1995 to October 2012. This index is formed from monthly self-reported

returns complied from a source of over 2,200 hedge funds with over $50 million USD

under management and a track record of greater than 12 months. These returns are
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Industry SIC Codes

Consumer 0100-0999
2000-2399
2700-2749
2770-2799
3100-3199
3940-3989
2500-2519
2590-2599
3630-3659
3710-3711
3714-3714
3716-3716
3750-3751
3792-3792
3900-3939
3990-3999
5000-5999
7200-7299
7600-7699

Manufacturing 2520-2589
2600-2699
2750-2769
2800-2829
2840-2899
3000-3099
3200-3569
3580-3621

Industry SIC Codes

Manufacturing 3623-3629
(cont.) 3700-3709

3712-3713
3715-3715
3717-3749
3752-3791
3793-3799
3860-3899
1200-1399
2900-2999
4900-4949

High Tech 3570-3579
3622-3622
3660-3692
3694-3699
3810-3839
7370-7379
7391-7391
8730-8734
4800-4899

Health 2830-2839
3693-3693
3840-3859
8000-8099

Other All
Remaining

Table 3.1: Ken French 5 Industry Groupings

reported net of individual fund managers’ fees. As extensively detailed in histori-

cal literature, we note that there can be some biases present in these self-reported

aggregated hedge fund indices including illiquidity-induced serial correlation in fund

returns (Getmansky, Lo, and Makarov, 2004), backfill and incubation bias (Fung

and Hsieh, 2004), and self-selection bias (Fung and Hsieh, 2000, 2009). Nevertheless,

in the absence of better information, this data remains a reasonable and commonly

93



www.manaraa.com

used proxy for the performance of the aggregate hedge fund industry portfolio.

For the portfolio asset classes, we use a similar set to those used in Fung and

Hsieh (1997). Table 3.2 enumerates the asset class list and color key. Equities are

divided into US, non-US (Europe, Australasia, Far East), and emerging markets. The

prevalent Morgan Stanley Capital International (MSCI) indices are used are used for

each of these respective locales. Commodity returns are represented by spot returns

on Gold and WTI Cushing Crude Oil. Returns on holding long US Dollar futures

against the Euro, Japanese Yen, British Pound, Canadian Dollar, Swedish Krona and

Swiss Franc are represented by the Deutsche Bank US Dollar Long Futures Index. In

contrast, we break fixed income securities into municipal, corporate high yield, and

mortgage backed securities (MBS), since Fung and Hsieh (1997) find that municipal

and high yield bond funds have low correlation with their asset class set. We use

the respective Barclays Capital Indices for each of these fixed income classifications.

Consistent with their findings, the inclusion of these asset classes in our estimation

procedure significantly increases the amount of variation in returns explainable in

the index for the aggregate hedge fund industry. This supports the intuition that

both municipal bonds and corporate high yield bonds are important components of

the hedge fund industry portfolio. We also include an index of MBS returns since we

find that their inclusion significantly increases explainable index variation. As with

any estimation technique, we emphasize the importance of appropriate explanatory

variables, and in this case, an appropriate set of portfolio assets due to the potential

for omitted variable bias arising from correlation across asset returns.

Additionally, we would like to recognize the popular hypothesis of hedge funds

taking large short positions on various assets. Notably, the structure of this Dirichlet

Portfolio Model family does not allow for negative weight estimation since values are

restricted to the simplex. Although it may be easy for an individual hedge fund to
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Color Asset Class Name
MSCI US Equity Index
MSCI EAFE Index (Europe, Australasia, Far East)
MSCI Emerging Markets Index
Gold Spot
WTI Cushing Crude Oil Spot
Deutsche Bank US Dollar Long Futures Index
Barclays Corporate High Yield Bond Index
Barclays Mortgage Backed Securities Index
Barclays Municipal Bond Index

Table 3.2: Asset Class Color Code

take conceivably large short positions on a particular asset, historical data suggests

that it is unlikely that the aggregate of all hedge funds holds net short positions

on any asset class. England’s Financial Conduct Authority, formerly the Financial

Services Authority, conducts periodic holdings surveys on a subset of approximately

50 hedge fund managers across over 100 funds. These quarterly reports confirm that

although some funds bolster large short positions, the net exposures inside all these

asset classes are almost always net-long. In the very rare cases where exposures

are net-short, they are almost indistinguishable from zero. Therefore, the assumed

net-long estimation structure is largely appropriate.

3.5 Mutual Fund Results

In this section, we exhibit the estimation results on our constructed index of actively

managed diversified equity mutual fund performance. Figure 3.3 shows the monthly

series of estimated industry relative portfolio weights for each of the five industry

portfolios. Overlaid on these plots are the quarterly constructed series of “true”

industry weights. We note that while these portfolio weights are not precisely weights

on the value weighted industry portfolios, they closely proxy for these as the net asset
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value size of the overall index portfolio, and therefore the aggregate holdings size in

each industry, grows large.

Examining the estimation results, we find that the L-DPM procedure strongly

captures the dynamics of the portfolio weight allocation process. Particularly, the

fitted weight series tends to be most accurate for the Technology, Health, and Other

groupings due to their lower correlation with each other as well as the remaining

industry returns. For our hedge fund example in the next section, this suggests

potential for even more precise estimation results since contemporary correlations

across various asset classes are significantly less than those across equity industries.

We also point out that since the constructed mutual fund index surely holds its par-

ticular selection of firms within an industry in slightly different proportions than the

corresponding value weighted industry portfolio, minor estimated weight differences

are expected due to marginally different industry correlation structures. Neverthe-

less, since we are especially interested in changes in asset allocation, we observe that

even in the assets where the estimated weights do not track precisely with the true

weights, their first-differences do track very closely.

It is also important to mention that although these industry weights appear

constant over some periods of time, there are a number of periods where weights

change rather significantly. To test the null hypothesis that these portfolio weights

are constant over the sample period, and that simple OLS would be suitable, we

employ the Generalized Fluctuation test of Kuan and Hornik (1995) to test for time

varying regression coefficients. The result of this test gives a p-value of 1.749e-9,

indicating a strong rejection of the constant weight hypothesis in favor of a model

with time-varying weights. The test indicates that the majority of the rejection

strength arises from the High Tech, Manufacturing, and Other industries.

Figure 3.4 illustrates the estimated means of these weights, stacked in an area plot
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Figure 3.3: Estimated Weight Accuracy Comparison
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Figure 3.4: Aggregated Estimated Weights & Leverage

to give perspective on how they evolve dynamically with respect to each other. Along

with this, the joint estimation results for the leverage scaling value is plotted below.

As expected, this value is close to, and sometimes below zero indicating a net absence

of leverage across the set of actively managed diversified equity mutual funds. This

net de-leveraged effect can be indicative of cash holdings, underperformance due to

management fees, and even underperformance in firm selection within each relative

industry set. Notably, there is a discernible upward trend in these leverage values,

becoming not statistically different from zero in the most recent period. This suggests

a diminishing effect of these aforementioned causes.

Figure 3.5 exhibits the cumulative return series for the individual industry port-
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Figure 3.5: Cumulative Return Comparison

folios, the constructed actively managed diversified equity mutual fund index, and

the replicating portfolio constructed by the L-DPM’s estimation on the 5 industry

portfolios, less the return on the S&P 500. We subtract the return on the S&P 500

to remove broad market variation due to equity mutual funds’ high correlation with

this market proxy, and therefore focus on the differences between our series of in-

terest. For comparison, we also include a return series on a time-invariant, constant

weight portfolio estimated on the entire sample via OLS. We see that the L-DPM

procedure does a very accurate job in explaining the variation in the index of mutual

fund returns by the combination of component industry groups and the estimated

dynamic asset allocation process. Table 3.3 shows monthly sample statistics as-

sociated with these return series. While individual industry correlations with the
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constructed mutual fund index range from 65.3% to 89.4%, the L-DPM portfolio has

a 99.4% correlation with the index. As well, the dynamic asset allocation process of

the L-DPM is able to explain 98.8% of the variation in the index returns from the in-

dividual industry portfolios’ explanatory power of 42.6% to 79.9%. This is consistent

with the theoretical unexplainable variation implied by the constructed true industry

weights of around 2%. For comparison, the results using constant OLS weights gives

smaller correlation and R2 values of 98.6% and 97.3%, respectively. Finally, we point

out that the mean returns over the sample period for all of the industry portfolios

are greater than that of the constructed mutual fund index, thereby motivating the

previously mentioned de-leveraged effect.

Monthly Mutual Fund Summary Statistics

Monthly Rets AMDE L-DPM Cnsmr Manuf HiTec Hlth Other

Mean 0.00786 0.00772 0.00879 0.00922 0.00865 0.00988 0.00809
Std Dev 0.04197 0.04186 0.04124 0.04096 0.06466 0.04578 0.05217
RMSE 0 0.00456 0.02301 0.02276 0.03293 0.03670 0.02616
Mean Abs Err 0 0.00319 0.01667 0.01593 0.02257 0.02776 0.01865
Correlation 1 0.99408 0.84692 0.84960 0.89438 0.65301 0.86682
R2 1 0.98819 0.71727 0.72182 0.79992 0.42642 0.75138

Table 3.3: Explanatory Summary Statistics (Monthly Returns)

3.6 Hedge Fund Results

In this section, we detail the estimation results for the decomposition of the aggre-

gate hedge fund industry portfolio. Similarly to the mutual fund example, we use the

Leveraged Dirichlet Portfolio Model to estimate relative portfolio weights and lever-

age multiplier values on the aggregate hedge fund return data. We then use these

values to compute implied portfolio returns to evaluate explanatory power of the

dynamic portfolio weight allocation process and leverage values. As well, since true

values of the hedge fund portfolio weights are never available, we construct one-step-
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ahead predicted weights and leverage values to produce a time series of “forecasted”

returns. These are compared with the observed index returns to demonstrate the

out-of-sample forecasting accuracy of the estimation procedure.

Figure 3.6 shows the estimation results for both the relative portfolio weight pro-

cess and the leverage multiplier values. The corresponding color key is previously

exhibited in Table 3.2. A clear cyclical pattern is discernible in the estimated weights,

with transitions from equities in periods of economic expansion to fixed income se-

curities during economic contraction. Revisiting the previously mentioned Financial

Conduct Authority’s sample of 50 surveyed hedge fund managers, we can check if

these estimated weights are generally consistent with their reported weights, even

for such a small sample of the hedge fund industry. We note that their chosen asset

classes represent different mutually exclusive divisions than ours. For example, they

divide equities into ‘listed’ and ‘un-listed’, whereas we divide them into the more

descriptive US, EAFE (Europe, Australasia, and Far East), and emerging markets

categories. Therefore, although we cannot appropriately compare results on a very

focused level, we still can compare across broad asset classes. That is, in March

2012, they show relative net equity, fixed income, and other exposures of around

35%, 57%, and 8%, where our methodology produces estimates of 36.6%, 52.9% and,

10.5%, respectively. Even though differences in these values can surely manifest due

to differences between the groups of hedge funds included in the data sets, these

values are remarkably similar.

The figure also shows the estimated values for the leverage multiplier γt. Similar

to Korsos (2013a), we observe a rather constant, but slowly decreasing leverage value.

Notably, the estimated value is never statistically different from zero. This suggests

that although some funds may employ large amounts of gross leverage to obtain their

individual portfolio returns, the net value of borrowing among this entire sample of
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the hedge fund industry is in fact, negligible. We will examine and discuss detailed

reasoning for these results in section 6.
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Figure 3.6: Estimated Relative Weights & Leverage Values

Figure 3.7 compares the portfolio returns constructed from using both the same-

period estimated, as well as one-step-ahead forecasted weights and leverage values.

We observe that the portfolio returns produced by using the same-period estimated

portfolio weights and leverage are exceptionally close to the true hedge fund returns,

indicating strong in-sample explanatory power of the L-DPM. Even more compelling

is the series of portfolio returns produced with the one-step-ahead forecasted portfolio

weights and leverage. The forecasted returns are also remarkably close to the actual

observed returns in the next period, thereby strongly supporting the procedure’s
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forecasting ability and thus estimation accuracy. The most noticeable differences in

the forecasting accuracy occur around periods of high volatility in the hedge fund

returns. We identify 3 major reasons for this effect. First, since funds are likely to

attempt to strategically adjust their asset allocation, it is difficult to capture quick,

intra-month changes in portfolio weights due to the monthly data granularity. Sec-

ond, since the correlation of asset returns commonly increases during volatile periods

(Jacquier and Marcus, 2001; Engle, 2002), it becomes more difficult to identify and

decompose the sources of portfolio risk. Third, since the realization of high volatility

decreases value to investors, funds are more likely to employ smoothing of illiquid

asset returns in a highly volatile environment (Kadlec and Patterson, 1999; Fisher,

Gatzlaff, Geltner, and Haurin, 2003). Despite these potential issues, during periods

of high asset price volatility, although the absolute amount of error increases, the

absolute amount of correctly captured variation increases as well. Hence, as the un-

derlying asset returns become more volatile, the relative amount of error does not

significantly increase as a percentage of total volatility, thereby implying a rather

constant R2 value over the entire sample period.

Table 3.4 details summary statistics for the monthly returns of the index, the re-

turns implied by the weights and leverage of the Leveraged Dirichlet Portfolio Model

estimation, and the returns on the individual compositional asset classes. As in the

previous return comparison plots, the ‘explanatory’ return values are constructed

with the same-period sequential estimates, thereby indicating explanatory power of

the model given the compositional asset classes. While the individual asset class cor-

relations with the hedge fund index range from -22.3% to 83.5%, the L-DPM portfolio

has a 92.3% correlation with the index. As well, the dynamic asset allocation pro-

cess of the L-DPM is able to explain 85.2% of the variation in the index returns

from the individual asset classes’ explanatory power of 0.3% to 69.7%. As well, it
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Figure 3.7: Same-Period & Forecasted Returns

is important to identify that these sequential estimates do not even include future

period data in the current period estimates. Therefore, they do not use the entire

sample period of data at each time period, as is commonly done in the many histori-

cal OLS based approaches. Thus, these estimates may be improved by implementing

the fixed-interval particle smoothing technique of Carvalho, Johannes, Lopes, and

Polson (2010) in order to refine the portfolio weight and leverage estimates at all

periods. Nevertheless, due to the sequential nature of the estimation procedure, the

L-DPM does have a stark advantage of being able to produce ‘forecasted’ portfolio

return values constructed with the prior weights and leverage implied by the dynamic

transition model. Significantly, these forecasted estimates exhibit predictive power
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of 75.7% of the one-month-ahead hedge fund index return variation.

Although the mean values of the returns implied by the L-DPM estimated weights

and leverage are below those of the original index, this effect arises from the afore-

mentioned biases and return smoothing in the self-reported data. As previously

suggested, applying a desmoothing model to the original return data, shifts the

weights into higher volatility and higher returning assets. This decreases, but does

not completely eliminate the gap. The remaining difference can be interpreted as

the effect of reporting biases in the data. The size of this underperformance gap is

consistent with Malkiel and Saha (2005) and Jurek and Stafford (2013) who report

the annualized effects of these biases from as low as 3% to potentially over 7% for

various sources of hedge fund data. For comparison to our results, that would imply

a monthly upward bias of between 0.25% to 0.583% in the mean return.

Figure 3.8 illustrates a cumulative return comparison, similar to that in the mu-

tual fund example. Plotted are the individual compositional asset class returns, the

aggregate hedge fund industry index, and the replicating portfolio constructed by

the L-DPM’s estimation on the 9 asset classes. We see that the L-DPM procedure

is able to construct a cumulative return series which is shaped very similarly to

that of the hedge fund index, especially when considering the differing variability

in the individual compositional assets. Similar to the numerical results above, the

underperformance size, relative to the index, is consistent with the data bias sizes

suggested in the aforementioned literature.

Strikingly, this graphical perspective identifies that most of the “underperfor-

mance” does not occur evenly throughout the entire sample period, but instead

mostly around late 1999 to early 2000. In fact, aligning the true index and the

L-DPM replicating portfolio as of 2001 produces an almost identical fit. As previ-

ously mentioned, data issues surely contribute to this difference especially because
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Monthly Hedge Fund Summary Statistics

Monthly Returns HFRIFWC
Index

Explanatory
L-DPM

Forecasted
L-DPM US Equity

Mean 0.00707 0.00545 0.00480 0.00652
Standard Deviation 0.02122 0.02063 0.02190 0.04643
RMSE 0 0.00837 0.01121 0.03337
Mean Absolute Error 0 0.00552 0.00784 0.02484
Correlation 1 0.92302 0.86998 0.75456
R2 1 0.85196 0.75687 0.56935

Monthly Returns EAFE
Equity

Emerging
Mkt

Equity
Gold Spot Crude Oil

Spot

Mean 0.00459 0.00767 0.00846 0.01233
Standard Deviation 0.05016 0.07193 0.04768 0.09517
RMSE 0.03612 0.05529 0.04808 0.08921
Mean Absolute Error 0.02671 0.04214 0.03789 0.07079
Correlation 0.77959 0.83514 0.19936 0.38071
R2 0.60777 0.69746 0.03975 0.14494

Monthly Returns
Long US
Dollar

High
Yield Cor-
porates

Mortgage
Backed
Sec

Municipal
Bonds

Mean 0.00203 0.00657 0.00504 0.00476
Standard Deviation 0.02463 0.02761 0.00763 0.01203
RMSE 0.03619 0.02190 0.02325 0.02391
Mean Absolute Error 0.02731 0.01598 0.01788 0.01863
Correlation -0.22282 0.62389 -0.09114 0.05295
R2 0.04965 0.38924 0.00831 0.00280

Table 3.4: Explanatory & Forecasted Summary Statistics (Monthly Returns)

the early 2000’s saw a dramatic increase in the number of hedge funds, and since the

index is comprised of funds which have existed for at least 12 months, backfill and

incubation biases are an especially significant consideration during this time period.

3.7 Net Leverage & Asset Class Exposures

Examining the estimated hedge fund results, it is initially striking to see net leverage

values which are in the range from 0% to 10%. From widespread reports in the

popular media, it is not uncommon to hear about hedge funds taking leveraged
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Figure 3.8: Cumulative Return Comparison

positions of over 10 times their contributed capital. For example, in an April 2012

article in the Financial Times, Michael Hintze, chief executive of CQS, a $9 billion

London based hedge fund said, “hedge funds are presently leveraged one to three

times; if they’re mad, five times; if they’re insane, 10 times.” Given this media

imposed ‘prior’, it seems that we should expect estimated leverage multiplier values

in our model of around 1, 000%. So this certainly provokes the question: Where is

all the leverage in the hedge fund return data?

First, let us define the idea of leverage. That is, leverage is the means by which an

investor captures an exposure level to a particular asset which is greater than what

could normally be captured by only using contributed capital and directly investing

in the notional amount of that asset.
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Now, in order to answer the question above, we first detail the various sources of

hedge fund leverage. First, it must be noted that not all forms of leverage directly

involve borrowing to fund asset purchases. This usually is referred to as ‘synthetic’

or ‘embedded’ leverage. For example, futures contracts provide profit or loss on a

notional amount of an asset for only a posted margin of around 5 to 15% of that

asset value. Therefore, performance indices based on these futures contracts, like our

commodities and US Dollar futures indices above, already have leverage built into

their returns. Options contracts are a similar concept where investor can gain expo-

sure to underlying asset price movements for a fraction of the notional value of those

assets. Structured products like collateralized debt obligations (CDOs) also exhibit

leverage-like qualities for junior payment tranches. Outside of exchange traded or

over-the-counter (OTC) securities, funds can structure swap contracts with invest-

ment banks to exchange return differences between two reference assets. Since the

hedge funds only must post a fractional margin amount and do not directly purchase

the full notional value of these assets, these swaps exhibit leveraging qualities as well.

Accompanying these products, funds may choose to directly borrow in order to fund

other desired exposures. Most commonly, this is achieved via repurchase agreements

(REPOs), but can also be done through prime brokerage borrowing facilities, and

to a lesser extent unsecured borrowing or even traditional term financing, like the

issuance of public debt.

Investment managers employ these different types of leverage for a variety of rea-

sons. The most familiar use is to obtain general return enhancement when a manager

has strong conviction to increase directional exposure. On the other hand, leverage

can be used as part of a risk reduction strategy if a manager places short positions

against their long positions to potentially decrease exposure to a cross-sectional risk

factor. In this case, gross exposures will surely exceed the amount of contributed cap-
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ital in the strategy, but the net exposure will be below this value. As well, leverage

is commonly used for the magnification of low risk returns in spread strategies where

directional market speculation is not necessarily made, but instead where arbitrage

may exist or nearly complete risk hedging is postulated for a particular strategy. Fi-

nally, leverage can occur when a manager is concerned with liquidity and transaction

costs. For example, in the cases of commodities and corporate bonds, futures and

other derivatives on the reference assets are commonly more liquid or carry lower

transaction costs than the underlying assets themselves. Therefore, fund managers

will commonly invest in these products as a more efficient means to gain exposure

to the referenced assets’ price movements.

Returning to our originally posed question, let us now consider a hedge fund

who believes that within a particular industry, a certain stock is slightly over-priced

relative to another stock. Wanting to place a bet that these two prices will converge,

the fund does not want to be exposed to the common industry risk present in both

of these assets. By placing a long bet on the relatively under-priced asset, and

a corresponding short bet on the relatively over-priced asset they can achieve this

goal. Although their total exposure of this position may be quite small due to the

netting of the industry exposure, the gross exposure appears quite large since it is a

total of both long and short positions. This gross exposure, divided by contributed

capital is the commonly quoted leverage multiplier value seen in industry reports

and the popular media. If we instead consider the case where these funds invest in

the corresponding options contracts rather than the reference equities, this difference

between the net and gross exposures can quickly grow rather large and obfuscate our

view of aggregate exposure levels.

Furthermore, individual funds, who naturally will have varying directions of net

exposures, will additionally net out to an even smaller magnitude aggregate net ex-
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posure. Concurrently, each of their gross exposures will invariably sum together to

create an even larger aggregate gross exposure. This effect creates a compounding

amplification of aggregate gross exposure levels while aggregate net exposures can re-

main relatively small. Although not explicit as to this effect, evidence of this is found

in England’s Financial Conduct Authority’s (FCA) periodic reports on hedge fund

risks. For example, in their subset of surveyed funds they find around $200 billion in

short exposures and $275 billion in long exposures to listed equities, thereby giving

$475 billion in gross exposures and only $75 billion in net exposures. Nevertheless,

the FCA’s July 2011 report does identify that net exposures are “generally positive

but low across most asset classes [and that] this low ‘net long’ exposure is a common

characteristic of hedge funds and differentiates them from other asset managers.”

Interwoven in this concept of net versus gross asset exposures is net versus gross

leverage. In the listed equities example above, financing for much of the long positions

can be offset via proceeds from the short positions. To keep this example simple,

assuming negligibly small borrowing costs and margin requirements, $200 billion

of the long positions are financed with $200 billion of proceeds from the shorts.

This leaves $75 billion remaining to finance in long equity positions. If this entire

amount is financed via contributed capital, this yields a gross leverage multiple of

(200 + 200 + 75)/75 = 6.33, whereas net leverage is simply (−200 + 200 + 75)/75 =

1, that is non-existent. Financing even $10 billion of these equity positions via

borrowing facilities still yields similar multiplier results of (200+200+75)/65 = 7.31

for gross leverage and only (−200 + 200 + 75)/65 = 1.15 for net leverage. That

is, with $10 billion of borrowing, gross leverage appears as 631% above contributed

capital, when net leverage truly is only 15%. As well, these differences in leverage are

even more pronounced in fixed income securities since very large leveraged positions

can be achieved via futures, swaps, and structured products contracts with no need
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for direct borrowing to fund these positions.

The 2008 financial crisis, the near-failure of Bear Stearns, and the bankruptcy

of Lehman Brothers have surely highlighted the importance to hedge funds of the

seemingly more administrative parts of their operations according to the European

Central Bank’s (ECB) periodic Financial Stability Review. This includes simple

functions like monitoring both cash and securities balances with their prime bro-

kerages and even their counterparty exposures. As well, banks have become more

cautious with their transactions with these prime brokerage clients. This precaution

has manifested into higher margin requirements and more conservative collateral val-

uation. As well, investors in hedge funds have demanded more liquidity and higher

cash balances for redemption waves in order to avoid fire-sales on existing portfolio

assets. All of these have a strong diminishing effect on the amount of leverage used

by hedge funds.

According to the ECB, this deleveraging shift is “intensified by mounting and

expected redemption requests from investors.” They suggest that this has caused

many hedge funds to reallocate investments to less risky assets such as cash and

equivalents. As well, they report that the number of hedge funds reporting leverage

multiples of less than one reached record high levels in September and October 2008.

Our estimated results confirm this suspicion. Furthermore, the aforementioned FCA

reports find that ratios of unencumbered cash to total borrowings from 2009 to 2012

have averaged around 75%, suggesting that even when funds use borrowing in the

construction of their portfolio, most of it remains in cash as a protection against

redemption waves and margin calls.

To answer the question of where the leverage is in the data, the simple remark is:

It’s there, but it’s hiding. Due to the netting of opposing gross positions, both intra-

and inter-fund, the aggregate net leverage exposure remains quite small. Since the
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net exposures and leverage of the industry of hedge funds is very small compared

to the gross exposures and leverage, this suggests that these funds are largely just

taking sizable bets against each other.

3.8 Implications for Herding Behavior

In the aftermath of financial crises, the idea of ‘herding’ behavior, or positive-feedback

trading, commonly arises in examinatory discussions of the financial markets. Herd-

ing is a pejorative term which describes the behavior of groups of investors who sell

when prices are falling and buy when prices are rising. Morris and Shin (1999), Per-

saud (2000), and Shiller (1990) express concern and detail why this herding behavior

can result in increased volatility as well as potentially destabilized markets. In the

2008 financial crisis, widespread criticism was brought upon hedge funds due to the

belief that their market participation exacerbated asset volatility. In one of the semi-

nal works on herding, Kodres and Pritsker (1996) study a sample of hedge funds and

their trading behavior in futures contracts from 1992 to 1994 and find that funds, in

fact, exhibit not positive, but negative-feedback trading behavior. That is, they tend

to buy when prices are decreasing and sell when prices are increasing. Therefore,

since they provide a ready counterparty for trading, they not only increase liquidity,

but also decrease volatility by reducing price pressures in the presence of directional

market forces.

In more recent events, the idea of potential herding behavior by hedge funds

has once again become widespread. As well, since complete and detailed time series

of hedge fund holdings are not publicly available, this has left the fund industry

open to mass criticism since evidence is not readily available to either support or

refute the claims of the popular media. Conveniently, the portfolio decomposition

of the Dirichlet Portfolio Model family allows for the construction of active portfolio
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weight changes. Analyzing these asset class weight changes, as they relate to previous

period’s returns allows us to assess not only if hedge funds still exhibit negative-

feedback trading behavior, but also if that behavior is limited to particular asset

classes.

As Korsos (2013a) previously identified, there exists a contemporary relationship

between active changes in hedge fund portfolio asset allocation and corresponding

asset class returns, attributable to classic demand variation on market prices. These

effects were identified by examining the relationship of active portfolio weight changes

and same-period asset class returns. Contrastingly, in order to evaluate potential

asset class feedback behavior, we are interested in assessing effects of historical asset

class returns on current period active changes in portfolio allocation. In order to

estimate these potential relationships, we similarly identify that portfolio weight

changes arise from two causes: capital appreciation/depreciation and time varying

asset allocation. The proportion of portfolio weight changes caused by holding period

capital appreciation/depreciation is not an investment decision directly controllable

by a portfolio manager. Therefore we concern ourselves only with portfolio weight

changes caused by active asset allocation trading decisions. In terms of our notation,

the portfolio weight change over time t caused by these active trading decisions is

given by wt|t−wt|t−1, where wt|t is the estimated portfolio weight at t and wt|t−1 is the

portfolio weight at t given a strict buy-and-hold transition from the previous period’s

estimated weight wt−1|t−1. This difference is the change in investment over period

t due to an active decision to adjust portfolio allocation. In terms of the dynamic

model, this difference is also thought of as the innovations on the weight transition

process. In the context of the L-DPM portfolio estimation with leverage multiplier,

this portfolio weight change is similarly given by
(
1 + γt|t

)
wt|t −

(
1 + γt|t−1

)
wt|t−1.

We can now estimate the effect of historical returns on current active asset allocation
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decisions on component asset i via:

(
1 + γt+1|t+1

)
wt+1,i|t+1 −

(
1 + γt+1|t

)
wt+1,i|t = β0,i + β1,irt−1,i + ξt,i

where

wt+1,i|t =
wt,i(1 + rA,t,i)

∑N
i=1wt,i(1 + rA,t,i)

and γt+1|t =
γt

1 + rΦ,t (1 + γt)

The constant coefficient β0 represents the average unconditional active change in

portfolio weights each month. The coefficient β1 represents the average effect on

the portfolio-size-normalized active change in asset class investment allocation over

month t given asset class return over month t− 1. That is, β1 is the average active

portfolio weight change effect explainable by variation in the previous month’s asset

class return.

Table 3.5 exhibits the OLS estimation details for each of the asset classes using

the results from the L-DPM. Not surprisingly, the constant coefficients β0 are all

indistinguishable from zero since the portfolio weight series are all stationary. We

focus attention on the β1 coefficients, which indicate the effects of last month’s lagged

asset class returns on the current month’s active changes in portfolio compositions.

Although not all statistically different from zero, 7 out of 9 of the asset classes have

negative coefficients, suggesting that when prices drop, hedge funds increase exposure

to those assets in the following month. This effect is strongest in oil and municipal

bonds. On the other hand, the two asset classes with positive coefficients, mort-

gage backed securities and emerging market equity, are both statistically significant.

Mortgage backed securities is most significant, suggesting that when MBS prices

drop, hedge funds have sold these assets. That is, although hedge funds exhibit

negative-feedback trading in most asset classes, and therefore contribute to lower

asset price volatility in those respective assets, they do exhibit positive-feedback
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trading behavior in MBS products and EM equity, thereby potentially contributing

to increased MBS and EM equity price volatility through herding.

Feedback Trading Effects

US Equity EAFE Equity EM Equity

β0 −0.00105 0.00055 −0.00016
(0.00095) (0.00076) (0.00073)

β1 −0.02830 −0.01442 0.05925∗

(0.01831) (0.02920) (0.03388)

R2 0.00799 0.00131 0.00755

***p < 0.01, **p < 0.05, *p < 0.1

Feedback Trading Effects

Gold Oil US Dollar

β0 −0.00041 −0.00054 0.00091
(0.00059) (0.00049) (0.00081)

β1 −0.02089 −0.16486∗ −0.00701
(0.03455) (0.08941) (0.00860)

R2 0.00125 0.01939 0.00161

***p < 0.01, **p < 0.05, *p < 0.1

Feedback Trading Effects

High Yield MBS Municipal

β0 0.00014 −0.00104 −0.00005
(0.00109) (0.00082) (0.00072)

β1 −0.02471 0.00768∗∗ −0.01375∗

(0.01655) (0.00286) (0.00847)

R2 0.01709 0.01204 0.01351

***p < 0.01, **p < 0.05, *p < 0.1
HAC standard errors are reported due to potential for
autocorrelation & heteroskedasticity in the errors terms

Table 3.5: Active Feedback Trading Effects

However, we note that although there is evidence that when prices decrease in

mortgage backed securities, hedge funds subsequently decrease relative holdings in

these assets, there is another possible explanation outside of the postulated herding

behavior which contributes to higher asset price volatility. In particular, mortgage

115



www.manaraa.com

backed securities followed a consistent downward trend during the sub-prime mort-

gage crisis of 2008. As prices declined, hedge funds decreased exposures to these

assets. Assuming that initially, prices under-reacted to declining housing prices and

increasing mortgage default rates, hedge fund market participation instead assisted

in the market’s price discovery process. Hence, their prudent selling allowed them

to avoid further losses rather than purely contributing to excessive volatility. A sim-

ilar effect, but in the opposite direction, is observed for the other asset class with

an estimated positive coefficient, emerging market equities. Since emerging markets

experienced largely consistent positive returns with relatively low volatility through

2007, hedge funds who increased their exposures to these assets assisted in the price

discovery process and thereby realized profits from contributing appropriate infor-

mation which implied higher prices.

Pooled Feedback Trading Effects

All Asset
Classes

Without
MBS &
EM

β0 −0.00011 −0.00009
(0.00027) (0.00031)

β1 −0.00861 −0.01836∗

(0.00957) (0.01073)

R2 0.00042 0.00197

***p < 0.01, **p < 0.05, *p < 0.1

Table 3.6: Pooled Active Feedback Trading Effects

In Table 3.6, we form a pooled OLS regression model using all the asset classes.

That is, we estimate the following:

(
1 + γt+1|t+1

)
wt+1,i|t+1 −

(
1 + γt+1|t

)
wt+1,i|t = β0 + β1rt−1,i + ξt,i

where the coefficients β0 and β1 are assumed to be the same across all asset classes
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i. Focusing on the fitted β1 values, we find that although the pooled herding effect

coefficient is still negative, the positive relationships from mortgage backed securities

and emerging market equities hinder statistical significance. However, when estimat-

ing this pooled effect without those asset classes, we do find a statistically significant

negative coefficient, implying that across the remaining asset classes, hedge funds

exhibit negative-feedback trading behavior.

Finally, we note that although hedge funds commonly employ smoothing of their

reported returns for various reasons, this does not pose a problem for the herding

estimation results. Take for example a hedge fund who experiences a large loss/gain

due to falling/rising prices on a particular asset over time period t − 1. In order

to smooth returns, the fund reports a higher/lower return than the true return,

thereby implying a lower (invariably) relative weight on the depreciated asset at

the beginning of time period t − 1. Assuming the hedge fund amends this missing

‘smoothed difference’ in the next period, this piece is appropriately added onto the

return over time period t. Since it is assumed that asset returns are independent

over time, this missing difference is independent of returns on the given asset in that

period. Therefore, although the exposure to this asset was effectively under-reported

for t − 1, and therefore under estimated, this added missing piece does not directly

affect the weight estimation at time t or future periods since estimated weight levels

will return to true levels. Hence, return smoothing should not create an artificial

herding effect in our estimated results. Therefore, when the desmoothing procedure

of Getmansky, Lo, and Makarov (2004) is performed on the initial hedge fund return

series, these results do not change materially.
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3.9 Conclusion

In this paper we presented a new analytical tool, the Leveraged Dirichlet Portfolio

Model (L-DPM) for decomposing portfolio returns into their unobservable relative

portfolio weights and leverage multiplier values. This compositional state space

modeling technique allows us to overcome the significant analytical hurdle that the

detailed set of hedge fund holdings is never completely observable for research. To

compel our hedge fund estimation results, we constructed a dataset of the actively

managed diversified equity subset of the mutual fund universe. Using this data, we

formed an aggregate return index, as well as “true” time-varying portfolio weights on

a division of equity industries. Using corresponding value-weighted industry portfolio

returns, we were able to closely estimate the these true industry weights via the the

L-DPM estimation procedure. Motivated by these empirical accuracy results for

mutual funds, we estimated the dynamics of both asset class level portfolio holdings

and leverage values on an index of hedge fund industry returns from 1995 to 2012.

With resulting estimates of these portfolio holdings, we discovered that net lever-

age levels in the hedge fund industry are smaller than popular belief due to netting

both internally and across different funds. As well, using these estimates, we con-

firmed previous findings that hedge funds do not contribute to herding behavior in

most asset classes, and in fact exhibit negative-feedback trading behavior in oil and

municipal bonds.
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